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In addition to deep-water rogue waves which develop from the modulation instability of an optical CW,
wave propagation in optical fibers may also produce shallow water rogue waves. These extreme wave
events are generated in the modulationally stable normal dispersion regime. A suitable phase or
frequency modulation of a CW laser leads to chirp-free and flat-top pulses or flaticons which exhibit
a stable self-similar evolution. Upon collision, flaticons at different carrier frequencies, which may also
occur in wavelength division multiplexed transmission systems, merge into a single, high-intensity,
temporally and spatially localized rogue pulse.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of extreme waves, often known as freak or
rogue waves, is presently a subject of intensive research in sev-
eral fields of application [1,2]. In oceanography, rogue waves are
mostly known as a sudden deep-water event which is responsible
for ship wreakages. A relatively less explored, but potentially even
more damaging manifestation of rogue waves also occurs in shal-
low waters, consider for example the propagation of tsunamis. In
such environment, the crossing of waters propagating in different
directions may lead to the formation of high-elevation and steep
humps of water that result in severe coastal damages [3]. A univer-
sal model for describing the formation of deep-water rogue waves
is provided by the one-dimensional Nonlinear Schrödinger Equa-
tion (NLSE). In this framework, rogue waves are linked with the
presence of modulation instability (MI) [4], whose nonlinear de-
velopment is described by the so-called Akhmediev breathers [5],
and may ultimately result in the formation of the Peregrine soliton,
a wave of finite extension in both the evolution and the transverse
coordinates [6].

An ideal testbed for the experimental study of rogue waves is
provided by optical pulse propagation in nonlinear optical fibers,
which is closely described by the NLSE. Indeed, the statistics of
spectral broadening in optical supercontinuum generation has been
associated with extreme solitary wave emissions [7]. Moreover,
the first experimental observation of the Peregrine solitons in any
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physical medium has been carried out exploiting the induced MI
occurring in a highly nonlinear fiber [8].

In this Letter, we show that rogue waves in optical fibers may
also be generated in the normal group-velocity dispersion (GVD)
regime of pulse propagation, where MI is absent. Indeed, nonlin-
earity driven pulse shaping in this case may be described in terms
of the semi-classical approximation to the NLSE [9], which leads
to the so-called nonlinear shallow water equation (NSWE) [10],
which is also known in hydraulics as the Saint-Venant equa-
tion [11]. Therefore we establish a direct link between the dy-
namics of extreme wave generation in shallow waters [12] and
their direct counterparts in optical communication systems. Since
the CW state of the field is stable, shallow water optical rogue
waves may only be generated as a result of particular setting of
the initial or boundary conditions. Namely, as discussed by Ko-
dama and Biondini [13,14], the initial modulation of the optical
frequency, which is analogous to considering the collision between
oppositely directed currents near the beach, or the merging of dif-
ferent avalanches falling from a mountain valley.

In Section 2 we shall describe the dynamics of the generation
of an intense, flat-top, self-similar and chirp-free pulse as a re-
sult of the initial step-wise frequency modulation of a CW laser.
In hydrodynamics, this corresponds to the hump of water which is
generated by two water waves traveling with opposite velocities.
The intriguing property of such pulses, that we name flaticons, is
their stable merging upon mutual collision into either a steady or
transient high-intensity wave, as discussed in Section 3. The pulse
collision dynamics may also lead to the formation of extreme in-
tensity peaks in optical communication systems whenever various
wavelength channels are transported on the same fiber. As pointed
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out in Section 4, an interesting application of optical shallow wa-
ter rogue waves is the possibility of generating, from a frequency
or phase modulated CW laser, high repetition rate pulse trains with
low duty ratio. In contrast with existing linear techniques for pulse
train generation [15,16], rogue wavetrains lead to chirp-free, high-
intensity pulse trains, which are important advantages for their
possible use as communication signals.

2. Optical pulse dynamics

The propagation of pulses in optical fibers is described by the
NLSE
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Here z and t denote the distance and retarded time (in the frame
traveling at the group-velocity) coordinates; β2 and γ are the
group-velocity dispersion and the nonlinear coefficient, and Q is
the field envelope. In dimensionless units, and in the normal dis-
persion regime (i.e., β2 > 0), Eq. (1) reads as
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where T = t/t0, Z = zγ P0 = z/LNL , β2 = β2/(T 2
0γ P0) ≡ LNL/LD ,

where LNL and LD are the nonlinear and dispersion lengths, re-
spectively, q = Q /

√
P0, t0 and P0 are arbitrary time and power

units. Eq. (2) can be expressed in terms of the real variables ρ and
u which denote the field dimensionless power and instantaneous
frequency (or chirp)
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By ignoring higher order time derivatives in the resulting equa-
tions (which is justified for small values of β), one obtains from
the NLSE the semi-classical or hydrodynamic NSWE [9,10]
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where Z ′ = β Z . In hydrodynamics, Eq. (4) describes the motion of
a surface wave in shallow water, i.e., a wave whose wavelength is
much larger than the water depth. In this context, ρ and u rep-
resent the water depth and its velocity, respectively. For a tempo-
rally localized input optical waveform such as a chirp-free square
pulse (which is representative of the nonreturn-to-zero (NRZ) op-
tical modulation format), i.e., with ρ(T , Z = 0) = ρ0 for |T | � T0
and ρ(T , Z = 0) = 0 otherwise, Eq. (4) may be analytically solved
up to the point Z ′ = T0/

√
ρ0 in terms of the well-known Rit-

ter dam-break solution [9,17]. Note that, at this point, the initial
square NRZ pulse has broadened into a triangular pulse. In order
to counteract such pulse deformation, it was proposed in [18] to
use an input step-wise periodic frequency modulation, so that the
self-phase modulation-induced chirp can be largely compensated
for.

We are interested here in studying the behavior of the solu-
tions of Eq. (4) with a dual quasi-CW pump input, that is we set
ρ(T , Z = 0) = ρ0, ∀T , and a periodic (with period T M ) frequency
modulation, namely

u(T , Z = 0) =
{

u0 for −T M/2 < T < 0,

−u0 for 0 < T < T M/2,
(5)

so that in each modulation period there are two opposite fre-
quency jumps. Indeed Eq. (5) corresponds to the injection of two

Fig. 1. Output (blue solid curves) and input (red dashed curves) power (a) and chirp
(b) profiles from a 7 km long DCF in the linear case (i.e., with γ = 0); (c) output
pulse power after a bandpass filter with 15.5 GHz bandwidth; (d) input and output
spectral intensity (solid blue curve) and intensity transmission function of bandpass
filter (dashed red curve); (e) contour plot of power profile vs. length.

time alternating, quasi-CW pumps at opposite frequencies ±u0, re-
spectively (see the power spectrum in panel (d) of Fig. 1). Suppos-
ing that u0 > 0, the frequency jump at T = 0 is such that, because
of normal dispersion, the leading wave components at T < 0 travel
slower than the trailing components at T > 0. Hence a wave com-
pression (optical piston effect) at T = 0 results, which leads to a
dispersive shock or optical wave-breaking. That is, high-frequency
oscillations appear with a characteristic oscillation frequency equal
to 1/β . The opposite situation occurs for the frequency jump at
T = ±T M/2, where dispersion leads to wave rarefaction, so that a
dark pulse or hole develops.

Indeed, as shown in panel (a) of Fig. 1, high-intensity os-
cillations also occur in a purely linear dispersive medium (i.e.,
whenever γ = 0 in Eq. (1)), owing to the beating among the
different frequency components which are generated by the ini-
tial condition Eq. (5), and that travel at different speeds. Here
we show the output power profile from a 7 km long dispersion-
compensating fiber (DCF) with normal GVD D = −100 ps/(nm km)

(or β2 = 127 ps2/km) under purely linear propagation conditions.
In Fig. 1 we considered a 1.25 GHz rate of frequency modulation
with ±26 GHz amplitude, and the input CW power P = 500 mW
(or 27 dBm).

Panel (b) of Fig. 1 shows that in the linear case the output
wavetrain develops a strong chirp as it propagates. Clearly in the
absence of nonlinearity the spectrum of panel (d) in Fig. 1 remains
unchanged, with most of its energy concentrated at the two quasi-
CW pump frequencies. Therefore if we place a relatively narrow
bandpass filter centered at the carrier frequency u = 0, we only
obtain a weak (i.e., with a peak power which remains two orders
of magnitude lower than the peak of the oscillations in panel (a) of
Fig. 1) periodic pulse train (see panel (c) of Fig. 1). We used here a
filter with the supergaussian spectral amplitude transfer function
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