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In this Letter, we introduce a geometric model to explain the origin of the observed shallow levels
in semiconductors threaded by a dislocation density. We show that a uniform distribution of screw
dislocations acts as an effective uniform magnetic field which yields bound states for a spin-half quantum
particle, even in the presence of a repulsive Coulomb-like potential. This introduces energy levels within
the band gap, increasing the carrier concentration in the region threaded by the dislocation density and
adding additional recombination paths other than the near band-edge recombination.
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1. Introduction

Dislocations in semiconductors are a nuisance for device de-
velopers since they introduce states which trap electrical charge,
reducing the number of available carriers. By getting charged they
introduce electric fields, locally affecting device performance by
scattering the electrons. Their states act as non-radiative recom-
bination centers for electrons and holes, therefore reducing the
efficiency of opto-electronic devices. They may also cause current
leakages by jumping of the electrons from state to state. In this
work we introduce a geometric model to describe the effect of a
density of screw dislocations on a spin-half charged particle. We
show that torsion, associated to the defect distribution, acts as a
magnetic field on the particles, giving rise to bound Landau-like
levels even in the presence of a repulsive electric field. Since the
magnetic-like effects due to torsion are insensitive to the signal of
the electric charge, depending on the location of the Fermi level
one might have either bound holes or electrons in these states.
This way, a suitable applied magnetic field may be used to partially
cancel the effects of torsion freeing some of the trapped charge
carriers from the bound states.

The concern with the influence of dislocations on charge car-
rier mobility in semiconductors is not new [1]. Shockley [2] was
the first to suggest that dangling bonds in the dislocation core may
act as traps (deep levels). Since these earlier studies a large num-
ber of articles have been published on the effects of dislocations
in the properties of semiconductors. For reviews, see [3]. Besides
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the dangling bond traps, electrons and holes may be trapped in
more extended states (shallow levels) due to the elastic deforma-
tion field of a dislocation or of a density of dislocations. This is
the subject of this Letter, where the deformation field enters as a
geometrical object, torsion.

In the elastic continuum, a torsion field appears linked to the
strain and stress introduced by a topological defect distribution
[5,6]. Katanaev and Volovich [6] have shown the equivalence be-
tween the continuum theory of defects in elastic solids and three-
dimensional gravity with torsion (that is 3D Riemann-Cartan ge-
ometry). The deformation introduced by the defect is described
geometrically by a metric which corresponds to a particular so-
lution of the 3D Einstein-Cartan equation [4,6,7]. Studies of the
influence of topological defects on quantum systems using the
Katanaev-Volovich approach have been made in quantum scatter-
ing [8], Landau levels for a nonrelativistic scalar particle [9], the
self-adjoint extension method [10], Landau levels for a spin-half
neutral particle [11], Berry’s phase [12], holonomic quantum com-
putation [13], and a two-dimensional quantum ring [14]. Other
studies of topological defects related to a torsion field, from the
classical point of view, are geodesics around a dislocation [15] and
torsion effects on electromagnetic fields [16].

In this Letter, with the purpose of better understanding the
shallow levels that appear in semiconductors threaded by screw
dislocation densities, we study the behavior of a spin-half charged
quantum particle under the influence of a Coulomb-like potential
in an elastic medium containing a uniform distribution of screw
dislocations. We show that the uniform distribution of screw dis-
locations plays the role of an effective uniform magnetic field, and
yields bound states for a spin-half quantum particle even when
the Coulomb-like potential is repulsive. Our results suggest that
one might use a magnetic field to destroy the dislocation density
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bound states and therefore minimize its effects on the charge car-
riers.

2. Geometric model

As shown in [17] a spinless quantum particle moving through
a uniform distribution of screw dislocations attains bound states
analogous to the Landau levels of a charged particle in a uniform
magnetic field. Even though the torsion associated to the defect
distribution does not affect charge it does couple to spin. Electrons
and holes are therefore undistinguishable from the point of view
of torsion. In order to get as close as possible to the problem of
carrier motion in the presence of a distribution of dislocations, we
extend [17] to include spin and a Coulomb-like potential. The ge-
ometry corresponding to a uniform distribution of parallel screw
dislocations is described by the line element [17] in cylindrical co-
ordinates

ds? =dp? + p?d? + (dz+ 2p* dg)’, (1)

where 2 = bzg, with A being the area density of dislocations and
b, the Burgers vector. The z-axis was chosen to lie parallel to the
screw dislocations.

With the choice of the nonholonomic 1-form basis
ol = dp;

szpd(p; 93:d2+9,02d(p, (2)

the line element (1) takes the form ds? = §%6%8y. The non-
coordinate basis (2) is related to the holonomic (flat space) basis
dx® =dz, (3)

dx! =dp;  dx* = pdy;

by the transformation 6% = e, (x)dx*. From now on we reserve
Latin indices to objects written in terms of the nonholonomic ba-
sis and Greek indices for the ones written in terms of the holo-
nomic basis. The transformation matrix e, (x) is known as triad.
It follows that ds? = guv (%) dxH dx” = e, (x) dxteb, (x)dx¥ 84, and
therefore gy, (x) = e“u(x)ebv(x)aab. That is, the geometry is en-
coded in e® M(x)ebv(x). Furthermore, the triad has an inverse given
by dx* = et4(x)09, where both, triad and its inverse, satisfy the
relations: e?;, (x)etp(x) = 8% and et (x)e?, (x) = 8%,,.

Following the formulation of the spinor theory in curved space-
time [18], we have that the partial derivative 9, becomes the
covariant derivative of a spinor whose components are defined
as Vy, = d, + [u(x), where [, (x) = foup®)Z? is called the
spinorial connection, wyq(x) is a connection 1-form related to
the curvature of the manifold, and 3% s defined for two-spinors
by $% = 1[o9 oP]. We denote 6° =1 as the 2 x 2 identity ma-
trix, and the matrices o' correspond to the usual Pauli matrices.
In the presence of torsion, the expression of the covariant deriva-
tive of a spinor changes [19]. In this case, the spinorial connection
is defined by: I'j,(x) = %[a)ﬂab(x) + K,wb(x)]E“b. The connection
1-form K,qp(x) is related to the contortion tensor via the expres-
sion [19]:

Kpuab () = Kgup (0)[e”a®)ePp (x) — e”p (x)eP o (x)]. (4)

Moreover, the contortion tensor Kgy, (x) is related to the tor-
sion tensor T#,,,(x) via KP,,, = J[TP,,(x) — T\, . (x) — TPy (0]
Note that the torsion tensor is antisymmetric in the last two in-
dices, while the contortion tensor is antisymmetric in the first
two indices. Following these definitions, we can also represent
the torsion tensor in terms of three irreducible components: the
trace vector T, = T#,4, the axial vector S* = €*f"“Tg,, and
the tensor ggy,, which satisfies the conditions: g, =0 and
€PViqg,,, = 0. In this way, the torsion tensor can be written

as Tpop = 3(Tvgpu — Tu8pv) — s€pvuy SY + dpuu. and the con-
nection 1-form (4) can be defined in terms of these irreducible
components [19]. By writing the torsion tensor in terms of the
irreducible components, it has been shown in Ref. [19] that the
axial 4-vector S* couples to spinors. Hence, the Schrodinger-
Pauli equation in the presence of curvature and torsion is given
by [20]

v 1 . Z02 1. -

Ly —Zm[p+u] tlf+80 Sy +V(p)y, (5)
where the vector Z is defined in such a way that its compo-
nents are given in the local reference frame by &) = %G%V’k(x) —

%SOUk. As discussed in [19], the components of the vector &

can be considered as internal degrees of freedom, that is, %6
corresponds to the spin of the particle. In this way, the cou-
pling between the 4-vector S* and spinors gives rise to the
term %6 S in Eq. (5), which is called the spin-torsion cou-
pling and is analogous to the Zeeman spin-magnetic field cou-
pling which introduces a splitting of each of the states into a
pair, one for spin up particles and the other for spin down par-
ticles. Also, we have a term coupling the linear momentum to
the spin, —}1508 . p, analogous to helicity. In order to solve
the Schrédinger-Pauli equation (5), we need to note that both
connections 1-form w,%(x) and K,%(x) can be obtained by
solving the Cartan structure equations [21] T® = d§® + w% A
6, where the operator d is the exterior derivative, the sym-
bol A means the wedge product, 0% = w;, % (x)dx" is the spin
connection 1-form, and T¢ = %T“W dx* A dx¥ is the torsion 2-
form.

Now, by solving the Cartan structure equations for the tri-
ads given in (2), we obtain wy!3(x) = —wy?1(x) = —1 and T3 =
282pdp Ade. Hence, we obtain [22] only one non-null component
of the axial 4-vector S#, which is S® = —42. Furthermore, let us
consider a Coulomb-like potential given by:

vioy=L =+ ()

Y Y

where f is a constant. Note that the plus (minus) sign in (6)
means that the Coulomb-like potential is repulsive (attractive). We
shall see that, bound states can be achieved for either sign of the
Coulomb-like potential (6) due to the influence of the uniform dis-
tribution of screw dislocations. This way, by considering the spin
being aligned with the symmetry axis of the screw dislocations
(z-axis), the Schrodinger-Pauli equation (5) becomes

iaxp_ 1 32+1a 1 92 92
ot~ 2m|ap2  padp  p2 8¢ dzdgp
92 1 io3 oy
1+ 2%p%)— —
+(1+ p)azz]w—i_Zm p% g
io3 oy 1 022 f
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We can see in Eq. (7) that ¥ is an eigenfunction of o3, whose
eigenvalues are s = £1 and the Hamiltonian of Eq. (7) commutes
with the operators [23] ]Z = —idy and p, = —id,, thus, we can
write the solution of Eq. (7) in terms of the eigenfunctions of the
operators J, and P, that is, s = e i€eil+DeikZR (1) where
I=0,41,4£2,... and k is a constant which corresponds to the mo-
mentum in the z-direction. We take k > 0 since, as we will see
below in Eq. (10), for k < O the minus sign of the exponent of the
Gaussian function becomes positive and we no longer have bound
states. This asymmetry is due to the choice of the Burgers vector
orientation. In this way, substituting this general solution into the
second order differential equation (7), we have
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