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We study the dynamics of two self-oscillating systems inertially coupled to a linear oscillator. This
interaction mechanism results in various types of synchronous motions such as in-phase, anti-phase
and phase synchronization. We demonstrate the existence of mono-stable regimes and multi-stable
behavior with two or more coexisting attractors. We present the bifurcational analysis revealing transition
mechanisms between these regimes. In the multi-stable case, we examine the role of coupling parameter

and shape of oscillations (the parameter indicating nonlinearity and strength of the damping) in various
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1. Introduction

Synchronization of coupled self-oscillating systems is of signif-
icant interest both from applied and fundamental points of view.
This special type of collective rhythmicity can occur in various nat-
ural and artificial systems and can lead to dramatic consequences
[1-3]. Currently, there are a lot of examples for constructive ap-
plications of this effect: in engineering it is used for improve-
ment of the line-width of a high power generator with the help
of a low power generator, having a narrower spectral line. It is
gained a great importance as a mean to generate high power laser
sources [4]. On the other hand, synchronously vibrating objects can
cause various destructions of the whole system, pathologically syn-
chronous firing generated in different brain areas is the hallmark
of epileptical seizures [5]. Therefore, for the proper use of posi-
tive properties of synchronization phenomenon and reduction of
its negative impact, it is important to understand the mechanisms
leading to this type of behavior.

In recent years, there has been a growing interest in study-
ing of synchronization in systems where the direct connection
between the interacting elements is absent. In such systems the
elements affect each other through an additional media (through a
resonator [6], a parallel RLC-load [7], a bath representing the con-
centration of melatonin in the bloodstream [8], a feedback loop [9],
etc.). In particular, there has been a lot of works on the detailed
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analysis of synchronization phenomena in Huygens-like systems,
where the crucial interaction comes from movements of the com-
mon frame supporting the pendulum clocks [10]. Both from the
theoretical and the experimental points of view, these systems
have been studied by Blekhman [1], Bennett et al. [11], Pantale-
one [12], Pogromsky et al. [13], Fradkov et al. [14], Senator [15],
Oud et al. [16], Graichen et al. [17], Czolczynski et al. [18]. In
these works, various mathematical models have been proposed
to reproduce Huygens original results. Note, that in his original
experiment, Huygens found that the pendulum clocks swung in
anti-phase only.

In order to explain the existence of synchronized motion, vari-
ous approximate approaches have been used. Particularly, the syn-
chronization problem in [11] was theoretically studied by deriving
a Poincare map for nonlinear dynamics. Simulations of this map
revealed three possible types of attracting states: anti-phase os-
cillations, quasi-periodic state, where the pendula run at different
frequencies, and so-called “beating death” state, in which one or
both clocks cease to run.

The existence of the in-phase oscillations in Huygens-like setup
was firstly observed and explained in [1] by means of coupled Van
der Pol equations. Later, neglecting the damping of the base mo-
tion and deriving approximate evolution equations by the method
of averaging, the stability diagrams for the in-phase and anti-phase
synchronization states have been obtained in [12]. However, the
peculiarities of these approximate approaches does not allow ob-
taining the complete picture of possible regimes. Note that the
important feature of the in-phase synchronization is N2-increase
of the common load oscillations power with N-increase of the
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number of oscillators, that has received special attention in other
applications [6,19].

In the present work we systematically analyze a system of two
self-sustained oscillators coupled to a linear load. It can be demon-
strated that the equations of this type can be obtained from the
Huygens problem by means of shortened expansions [20]. In order
to show the dynamical features of the considered system, vari-
ous types of coexisting attractors and their basins of attraction
had been numerically analyzed in [20,21]. It has also been shown
that in-phase, anti-phase and phase synchronization are possible
here. The main aim of the present work is to reveal the condi-
tions and bifurcational mechanisms for the emergence of these
regimes, to study the effect of the coupling strength and shape
of self-oscillations on the transition from mono-stable (with one
type of synchronous motion) to multi-stable regimes.

Note that coupling scheme considered in this work, was also
previously analyzed by Peles and Wiesenfeld [7] for various elec-
tronic arrays. By expanding solutions of the considered system in
terms of a small parameter, the authors obtained an analytically
tractable iterative map for the derivation of the stability bound-
ary for the in-phase state. This introduction of the small parame-
ter, however, implies that only quasi-harmonic oscillatory motions
can be considered within the framework of this approach. In the
present work different shapes of oscillations (from quasi-periodic
to relaxation forms) are considered. The bifurcational mechanisms
of transition from one type of synchronization to another with the
change of this form are revealed.

Moreover, the richest dynamics have been found for Huygens-
like system in recent experimental study of Oud et al. [16]. It has
been shown that in these systems more types of synchronization
can be observed. Besides the anti-phase and in-phase motions of
metronomes, some intermediate regimes of oscillations are possi-
ble. However, there is no clear understanding of mechanisms, lead-
ing to appearance of these regimes. In this work, the emergence of
attractors lying outside of both in-phase and anti-phase manifolds
is demonstrated within the framework of the considered system.
It is shown that oscillations corresponding to these attractors are
phase-synchronized, i.e. the phase difference for their oscillations
is always bounded.

The Letter is organized as follows. In Section 2 we show the
outline of the theoretical approach used in the present work. Fur-
ther, the dynamics of two indirectly coupled Van der Pol-Duffing
oscillators inside the two-dimensional anti-phase manifold and the
stability conditions for the anti-phase oscillations are discussed
(Section 3.1). The existence and stability of the in-phase regime are
examined in Section 3.2. Section 4 presents the results obtained
from numerical integration of the considered equations. Finally, in
Section 5 the obtained results are summarized and discussed.

2. Outline of theoretical approach

Let us consider a system that is described by the following
equations:

X+ @, %)=-8y, i=1,2,
2

JHhy+ 2%y =) 0. k). (1)
i=1

where parameters h and §2 are a damping factor and eigenfre-
quency of the linear oscillator, respectively; § is a coupling pa-
rameter. We assume that @ (—x, —x) = —®(x, X). In this case the
system (1) possess two symmetries defining the invariance under
the maps

O: (x1,X2,Y) —> (X2,X1,Y)
(X1,%2, y) = (X2,%1, ) (2)

and
¥ (X1,%2,Y) = (—x1,

(%1,%2, ¥) = (—x1,

—X2,—Y)
—X2, = 7). (3)

The map (2) defines the mirror symmetry with respect to
the four-dimensional in-phase manifold M; := {(x1, X1) = (x2,%2)},
while the transformation (3) gives the central symmetry. It should
be noted that, the transformations & and ¥ are commutative of
each other, i.e. ® oW =¥ 0 @, and their combination

OoW: (x1,X2,Y)—> (—X2, —X1,—Y)

(X1,%2,y) = (=X2, —X1, =) (4)
also gives the symmetry for the system (1).

Note that, the existence of the two-dimensional anti-phase
manifold Mg := {(x1,X1) = (—x2, —X2), y = y = 0} follows from
Egs. (1) [22].

We assume that @ (x, X) = ¢ (x) + A (x)X. In this particular case
we have the Lienard equation for modeling the oscillating behav-
ior of each single element. It is known that the conditions for the
existence of oscillations in this case are: ¢ (—x) = —¢ (x), ¢’ (x) > 0,
¥(x) <0 for |x| <xp and ¥ (x) > 0 for |x| > xp. In general case, the
function v (x) may also depend on the derivative, i.e. ¥ (x, X).

We are interested in the stability of synchronous regimes ob-
served in the system (1). Particularly, to study the stability of the
in-phase and anti-phase oscillations, it is convenient to define the
sum and difference variables:

_X1+X _X1—X
=T 0 1T
As a result, Egs. (1) can be rewritten in the form

(5)

1 . - ,
E+o[eE—né-m+oE+né+n]=-5,
- - .
i+s[eE+né+i—-PE—n§-]=0,

J+hy+ 2%y =0E —n&— i)+ PE+n,é+1). (6)

The stability of the in-phase solution is determined by the lin-
earized variational equations in a vicinity of the in-phase manifold
Ms:={n=0, i) =0}

i+ @y (&, 6)n + @€, 61N =0, (7)
which is driven by the dynamics of the equations on M;:
J+hy+ 2%y =20@.8). ®)

Similarly, the stability conditions for the anti-phase solution are
derived from the following set of equations:

E+ (1 +20)[0:(n. E + (. )E] =8(hy + 22),
J+hy+ 2%y =2[D:(n, ME + P (1, DE], 9)

where the oscillating solution on anti-phase manifold Mg :=
(=0, £€=0, y=0, y =0} given from the first equation of
(9), plays a role of the master oscillator.

3. Van der Pol-Duffing oscillators coupled to a common load

In order to model the oscillating behavior of self-oscillating sys-
tems, we consider @ (x;, ;) = @?x; + A(x? — DX —ax}, i=1,2.In
Huygens-like systems, for example, the second term models the
escapement mechanism of the pendulum clocks, and the cubic
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