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The properties of scattering phases and density of states in a quantum wire with an attractive scatterer
are analyzed. We consider two bound states which couple to a scattering channel and give rise to two
Fano resonances. It is shown that varying the parameters of the scatterer (such as its strength and
position) produces significantly different effects on the phase behavior and density of states, depending
on the subband they occur. These effects stem mainly from the difference between the coupling matrix
elements of the two resonant levels with the propagating channel mode.
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1. Introduction

It is established by now that the wave nature of electrons plays
a significant role in the interpretation of transport properties of
very small electronic devices. In order to fully characterize these
properties both the phase and magnitude of the electron wave
function are required to be known. The behavior of the wave-
function phase in an actual quantum transport device was origi-
nally investigated for an electron transmitted through a quantum
dot [1–4]. These important experiments demonstrated the pres-
ence of a coherent component in the current through a quantum
dot while, at the same time, a strange behavior of the transmission
phase was revealed; namely, the transmission phase drops sud-
denly by π in the conductance valleys.

In relation to these experiments, several theoretical efforts have
been devoted to investigating the behavior of the various phases
that appear in the scattering matrix [5–10]. The existence of two
important phases with very distinctive behavior was emphasized
[5,6]; namely, the phase of the transmission amplitude and the
phase that appears in the Friedel sum rule [11]. The major dif-
ference between the phases is that even though the Friedel phase
is a continuous function of the system parameters the phase of
the transmission amplitude can depart from the Friedel phase [5,6]
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and exhibit a nonanalytic behavior at energies where the modulus
of the transmission vanishes.

The simultaneous occurrence of a transmission zero and a sud-
den phase drop was interpreted in terms of the properties of a
Fano resonance [12]. A Fano resonance is caused by the quantum
interference of two transmission channels, a resonant one, associ-
ated with a discrete level, and a nonresonant one, associated with
a continuum band. It is the destructive interference between the
two transmission channels that leads to the Fano type of transmis-
sion zero and the associated phase discontinuities.

The above-mentioned behavior of the transmission phase may
also appear in a quantum wire with a scatterer [13,14]. In the
presence of a scatterer, a bound state in one subband (imaginary
wave number in the wire leads) can coexist with an unbound state
in another subband. A Fano resonance in this case arises when
the closed and the open channels are coupled, the channels be-
ing the propagating and cut-off subbands. However, it has been
shown that the effect of the scattering potential on a Fano reso-
nance strongly depends on the subband [15] through the bound
state-continuum coupling. Thus, it is natural to expect that the
scattering phases also depend sensitively on the subband they oc-
cur. One important issue, therefore, is in what manner does the
phase evolution in one subband differs from the phase evolution
in another subband in the context of ballistic transport through
quantum wires.

The purpose of this Letter is to extend our previous work [14]
and investigate the behavior of the scattering phases in a quan-
tum wire thus providing further insight into the present problem.
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The coupling between channels is provided by an attractive scat-
terer. We consider the case of one open and two closed chan-
nels, the latter two being dominated by their bound states. In this
two-subband regime, by varying the parameters of the scattering
potential (such as its strength and position), we investigate and
compare the behavior of the scattering phases that occur in the
first and second subbands.

Specifically, it is shown that the phase behavior in a particular
subband is determined by: i) the strength of the coupling to the
respective quasibound level, and ii) the strength of the interaction
of a channel mode with the scatterer. As a result, the phase evolu-
tion in one subband exhibits substantially different behavior than
that of the phase evolution in another subband.

2. Model and calculation

2.1. Coupled-channel model

We consider a ballistic uniform quantum wire in which elec-
trons are confined along the y direction (transverse direction) but
are free to propagate along the x direction. In the presence of a
scattering potential, the Schrödinger equation describing the elec-
tron motion is

H(x, y)Ψ (x, y) = EΨ (x, y), (1)

where H(x, y) is the Hamiltonian given as

H(x, y) = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂ y2

)
+ V c(y) + V (x, y). (2)

In Eq. (2), V c(y) is the confining potential and V (x, y) is the scat-
tering potential. The transverse potential V c(y), providing confine-
ment of the electron motion along the y direction, gives rise to
channel modes φn(y),[
− h̄2

2m

d2

dy2
+ V c(y)

]
φn(y) = Enφn(y), (3)

where En is the threshold energy for mode n. Expanding the wave
function Ψ (x, y) of Eq. (1) in terms of the channel modes and
substituting the expansion into Eq. (1) we obtain the following
coupled-channel equations for ψn(x),

(E − En − K̂ )ψn(x) =
∞∑

l=0

Vnl(x)ψl(x), (4)

where K̂ = −(h̄2/2m)d2/dx2 and Vnl(x) are the coupling matrix
elements given by Vnl(x) = ∫

dy φ∗
n (y)V (x, y)φl(y). These matrix

elements form effective coupling potentials for the longitudinal
electron motion and also provide the interaction between chan-
nels.

We assume that only the first channel mode (i.e., the mode
with n = 0) can be found in a scattering state. These states can
be found from Eq. (4) by considering the decoupling limit. In addi-
tion to the open channel n = 0, we consider two closed ones n = 1
and 2, which are dominated by their bound states Φ01(x) and
Φ02(x), respectively, with Ẽ j the bound-state energies ( j = 1,2).
The bound states can also be found from Eq. (4). Truncating the
sum in Eq. (4) at n = 2 and solving the resulting system of three
equations (see [15] for details and Appendix A of that reference)
we obtain the transmission amplitude as

t(E) = tbg (E − Ẽ1)(E − Ẽ2) − ε

(E − E(1)
R + iΓ1)(E − E(2)

R + iΓ2) − W 2
12

, (5)

where ε is real and proportional to the coupling potential V 12, and
E( j)

R = Ẽ j + δ j are the shifted quasibound-state (resonant) energies.

The shift and width, δ j and Γ j , of the jth bound-state energy are
determined from the self-energy term. Also, in Eq. (5) W12 denotes
the sum of two matrix elements,

W12 = 〈Φ01|V 12|Φ02〉 + 〈Φ01|V 10Ĝ0 V 02|Φ02〉. (6)

The first matrix element represents the direct coupling of the two
bound states, while the second matrix element represents the in-
direct coupling of the bound states via the open channel.

2.2. Scattering phases and density of states

For a single transport channel the scattering matrix is repre-
sented as a 2 × 2 unitary matrix at an energy E ,

S(E) =
(

r(E) t′(E)

t(E) r′(E)

)
. (7)

The unitarity condition, S† = S−1, guarantees conservation of par-
ticle current and implies that the eigenvalues of the scattering
matrix S are on the unit circle. We assume that both time-reversal
and inversion symmetries hold and, in this case, one has addition-
ally t = t′ and r = r′ .

The Friedel phase is defined by

θ f (E) = 1

2i
ln det

{
S(E)

}
, (8)

where, for a time-reversal symmetric system, det{S(E)} = −t(E)/

t∗(E). The derivative of the Friedel phase with respect to the en-
ergy of the incident electron can be related to the energy deriva-
tives of the scattering matrix. The density of states can also be
expressed in terms of the scattering matrix. From this we can ob-
tain a relation that connects the energy derivative of the Friedel
phase and the scattering matrix with the density of states,

∂θ f (E)

∂ E
= πρ(E). (9)

With the help of the transmission amplitude given in Eq. (5),
the Friedel phase of Eq. (8) can be expressed as

θ f (E) = θ
bg
f (E) +

2∑
j=1

arctan

(
E − E( j)

R

Γ j

)
− π

2
, (10)

where θ
bg
f (E) originates from the background contribution and

varies slowly with energy across a resonance. We also assumed
for simplicity that the interaction, W12, between the bound states
is small compared with the relevant energy scale |̃E1 − Ẽ2| and
therefore W12 can safely be neglected. Using Eqs. (9) and (10) we
obtain the density of states as

ρ(E) = 1

π

2∑
j=1

Γ j

(E − E( j)
R )2 + Γ 2

j

, (11)

which is a superposition of two Lorentzians with peak positions at
the resonant energies i.e., at E = E( j)

R .
On the other hand, the phase of the transmission amplitude can

be obtained by expressing Eq. (5) as t = |t| eiθt (E) where

θt(E) = θ
bg
t (E) + θ r

t (E). (12)

One can easily verify that θ
bg
t = θ

bg
f , which will henceforth be de-

noted as θbg . Note that the form of θbg depends on the specific
type of scattering potential.
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