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We present results of numerical calculations showing a three-body orbit’s period’s T dependence 
on its topology. This dependence is a simple linear one, when expressed in terms of appropriate 
variables, suggesting an exact mathematical law. This is the first known relation between topological 
and kinematical properties of three-body systems. We have used these results to predict the periods of 
several sets of as yet undiscovered orbits, but the relation also indicates that the number of periodic 
three-body orbits with periods shorter than any finite number is countable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is, at present, no deeper understanding of periodic three-
body orbits in Newtonian gravity, than the simple change of scale 
of spatial and temporal coordinates, see Section 10 of Ref. [1], that 
can be compared with Kepler’s third law for two-body motion, 
Ref. [1]. Kepler extracted his laws from the astronomical data con-
cerning two-body periodic orbits collected by Tycho Brahe and his 
predecessors.

Unlike a two-body orbit, a periodic three-body orbit is charac-
terized both by its kinematic and geometric properties and by its 
topology, which can be described algebraically by a word, or an el-
ement w(a,b,A,B) of free group F2 on two letters a,b (and their 
inverses A= a−1, B= b−1), see Refs. [2–4]. The algorithm used for 
“reading” of words corresponding to periodic orbits is described in 
the Appendix of Ref. [4].

Graphically, this amounts to classifying closed curves according 
to their “topologies” in a plane with two punctures. The closed 
curves are stereographic projections of periodic orbits from the 
shape-sphere, with three punctures – for a detailed explanation, 
see Refs. [2–4], and for graphic illustrations, see the web-site [16] – 
onto a plane with two punctures, the puncture at the “north pole” 
having been projected to infinity.
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That procedure leads to the aforementioned free group F2 on 
two letters (a,b), where (for definiteness) a denotes a clockwise 
“full turn” around the right-hand-side puncture, and b denotes 
the counter-clockwise full turn around the other puncture in the 
plane/sphere. In this way the topology of an orbit can be trans-
formed into an algebraic object that can be further manipulated.

But, even within this particular method of assigning a sequence 
of symbols to a topology there remains an ambiguity, regard-
ing the question which puncture should be taken as the “north 
pole” of the stereographic projection, see Appendix A.1. The length 
of the word generally depends on this choice, see Appendix B.1. 
We resolve this ambiguity by using the (common) symmetry axis 
of all presently known collisionless zero-angular-momentum pe-
riodic orbits to define the “north pole”, which we call the “nat-
ural”, or “symmetric” choice, because it leads to equal numbers 
na = nb = 1

2 nw of small letters a and b, as well as equal num-
bers nA = nB = 1

2 n̄w of capital letters A, or B. These relations need 
not hold with a different choice of “north pole”, however, e.g. with 
cyclically permuted punctures, generally n1a �= n1b and n1A �= n1B , 
see Appendix B.1. Moreover, the above-described procedure, is not 
the only way of assigning a sequence of symbols to a topology, for 
an alternative, together with our results expressed in these alter-
native terms, see Appendix B.2.

To date there is no collection of astronomical data regarding 
periodic orbits of three bodies comparable to Brahe’s collection of 
two-body orbits. Therefore, if one wishes to study general prop-
erties of the three-body system one must resort to numerical 
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Fig. 1. (Color on line.) The rescaled periods Tr(w) of presently known (zero-angular-
momentum) three-body orbits divided by the period of the figure-8 orbit Tr(w8), 
versus one half of the length of word Nw , i.e., one half of the number of all letters 
in the free-group word w describing the orbit, Nw/2 = (nw + n̄w )/2, where nw is 
the number of small letters a, or b, and n̄w is the number of capital letters A, or 
B in the letter w . Four (linear, quadratic, cubic and quartic) fits are shown as solid 
lines of different colors, yet they overlap so much that the difference can be seen 
only at Nw > 80.

studies. To this end, in this Letter we use the world’s total (pub-
lished) data set containing 46 distinct collisionless periodic orbits, 
Refs. [3,5–8,16], to extract the following (wholly unexpected) lin-
ear dependence of the (generalized) Kepler’s third law for the ratio 
Tr(w)/Tr(w8) of “rescaled” periods (i.e. periods evaluated at one 
common energy E) of three-body orbits,

Tr(w)

Tr(w8)
= T E(w)|E(w)|3/2

T E(w8)|E(w8)|3/2
� Nw

2
= (nw + n̄w)

2
(1)

on their topologies w , specifically on (one half of) the number of 
all letters Nw = (nw + n̄w), see Fig. 1. Here nw is the number of 
small letters a, or b, and n̄w is the number of capital letters A, 
or B contained in the latter w , and w8 = abAB if the free-group 
word describing the figure-8 orbit, Refs. [2,3,5]. We have divided 
the total number of letters Nw into two parts because orbits fall 
into different classes with distinct values of nw and n̄w , see Ta-
ble 1.

The worst-case disagreement of this linear dependence with 
the data is about 10%, though generally it is (much) better, occa-
sionally reaching the limits (six significant decimal places) of our 
numerical precision. In this Letter we point out four more accu-
rate (than 10%), yet still approximate sub-sequences of orbits, and 
one possibly exact regularity. For clarity’s sake, we show in Fig. 2
the corresponding graph for non-satellite orbits, only. Note that the 
range of the abscissa in Fig. 2 only reaches the value Nw = 49.

At this point a few words must be said about the statistical 
significance of results presented in Fig. 1, or equivalently about 
#(Nw), the number of distinct periodic orbits of “length” Nw : 1) 
At small length values one can explicitly count the mathematically 
allowed orbits and show that many have already been found, see 
Appendix A.2. 2) As one increases the number of letters Nw , the 
number of topologically distinct orbits #(Nw ) grows rapidly, see 
Appendix A.2, and the number of presently discovered (and dis-
played here) orbits pales in comparison with that number. The 
number #(Nw ) is not necessarily the same one as the number of 
physically possible orbits – Moore has shown by explicit examples 
how mathematically allowed orbits disappear as the exponent in 
the potential is reduced from a = 2 to a = 1 in Newtonian gravity, 
Ref. [7].

The large number of still possibly undetected orbits makes the 
observed linearity of the graph, Fig. 1, at higher values of Nw all 

Table 1
Rescaled periods T of three-body orbits, their ratios with Moore’s figure-8 period 
TM8, and with period Tβ of the first orbit β in the given section of the Table, as 
functions of the numbers na, nb, nA, nB , of a’s, b’s, A= a−1 ’s and B= b−1 ’s respec-
tively, in the free-group word description of the orbit. Note that “generic” relations 
n = na = nb and n̄ = nA = nB hold only in the “natural” or symmetric choice of 
stereographic projection (see the Introduction and Appendix A.1) and that, due to 
the time-reversal symmetry of the solutions, the n and n̄ may be interchanged.

Label 〈T〉2
〈T〉2〈TM8〉2

〈T〉2〈Tβ 〉2

n+n̄
nβ +n̄β

(n, n̄)

M8 26.1281 1 1 1 1,1
S8 26.1268 0.999951 0.999951 1 1,1

I.B.1 moth I 68.4636 2.62031 1 1 2,3
II.B.1 yarn 205.469 7.86391 3.00114 3 6,9

I.A.1 butterfly I 56.3776 2.15774 1 1 2,2
I.A.2 butterfly II 56.3746 2.15762 0.999944 1 2,2
I.B.5 goggles 112.129 4.29152 1.9889 2 4,4

I.B.7 dragonfly 104.005 3.98059 1 1 4,4
I.A.3 bumblebee 286.192 10.9534 2.7517 11/4 11,11

II.C.2a yin-yang I 83.7273 3.20449 1 1 3,3
II.C.2b yin-yang I 83.7273 3.20449 1 1 3,3
II.C.3a yin-yang II 334.876 12.8167 3.9996 4 12,12
II.C.3b yin-yang II 334.873 12.8166 3.9996 4 12,12

I.B.1 moth I 68.4636 2.62031 1 1 2,3
I.B.3 butterfly III 98.4354 3.76742 1.43778 7/5 3,4
I.B.2 moth II 121.006 4.63126 1.76745 9/5 4,5
I.B.4 moth III 152.33 5.83013 2.22498 11/5 5,6
I.B.6 butterfly IV 690.627 26.4324 10.0875 49/5 24,25

Fig. 2. (Color on line.) The rescaled periods Tr(w) of 16 presently known non-
satellite zero-angular-momentum three-body orbits divided by the period of the 
figure-8 orbit Tr(w8) versus one half of the length of word Nw , i.e., one half of 
the number of all letters in the free-group word w describing the orbit, Nw/2 =
(nw +n̄w )/2, where nw is the number of small letters a, or b, and n̄w is the number 
of capital letters A, or B in the letter w . Four (linear, quadratic, cubic and quartic) 
fits are shown as solid lines of different colors.

the more impressive: Note that 24, out of grand total of 46 or-
bits taken from Refs. [3,5,7,8], extend up to Nw = 49. These 24 
orbits include 10 (non-choreographic) figure-eight satellites from 
Ref. [5]. Among these 24 there are 16 non-satellite orbits that 
are shown separately in Fig. 2. The remaining 22 (of 46) orbits 
are the new (k = 5, 7, 14, 17, 22, 26, 35, 41 figure-eight satel-
lite) choreographies, Ref. [6], that extend up to Nw = 82 and thus 
test the proposed linear dependence(s) farther into the previously 
unexplored region. We emphasize that three of these new choreo-
graphic orbits are not satellites of the figure-eight.

The most precise regularity explains two previously noticed, but 
unexplained identities: a) the identity of periods (to 16 decimal 
places, in Ref. [9]); and b) the identity of actions (to seven sig-
nificant digits, in Ref. [10]), of two distinct orbits with the same 
topology, viz. of Moore’s and Simo’s figure-8 solutions, evaluated at 
equal energies. The same phenomenon was observed among seven 
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