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Heterogeneous delays with positive lower bound (gap) are taken into consideration in Kuramoto model. 
On the Ott–Antonsen’s manifold, the dynamical transitional behavior from incoherence to coherence is 
mediated by Hopf bifurcation. We establish a perturbation technique on complex domain, by which 
universal normal forms, stability and criticality of the Hopf bifurcation are obtained. Theoretically, 
a hysteresis loop is found near the subcritically bifurcated coherent state. With respect to Gamma 
distributed delay with fixed mean and variance, we find that the large gap decreases Hopf bifurcation 
value, induces supercritical bifurcations, avoids the hysteresis loop and significantly increases in the 
number of coexisting coherent states. The effect of gap is finally interpreted from the viewpoint of excess 
kurtosis of Gamma distribution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization of large populations of coupled oscillators plays 
a prominent role in nonlinear sciences [1–5]. Motivated by Win-
free’s mean-field idea [6], Kuramoto [7,8] confirmed that one pop-
ulation of weakly nearly-identical coupled oscillators could be de-
picted as a purely sinusoidal coupled phase model. This idea has 
been successfully used to model synchronization involving large 
community of phase oscillators [9,10], because it captures essential 
features of synchronization, ranging from networks of pacemaker 
cells in the heart [11,12], neutrino flavor oscillations [13], lasers 
[14,15] to Josephson junctions [16].

Time lag is inevitable in many coupled systems [17–20], be-
cause signal propagation gives rise to time delays and a system 
usually needs a processing time to input this signal. Due to the 
spatial distribution of oscillators, the transmitting delays among all 
oscillators in a network may be heterogeneous. In a network with 
near-identical oscillators, the responding delay can be viewed as a 
constant. Hence, the gross delay is usually subject to certain prob-
ability distribution with a gap, i.e., with a positive lower bound. 
Other examples with gapped delays usually arise in the biomathe-
matical problems. For instance, in population dynamics, the mature 
delay is an important parameter which is distributed in an in-
terval with positive lower bound [21]. Thus in a prey–predator 
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network, introducing heterogeneous delays with a gap should also 
be greater realism. When investigating the growth of phytoplank-
ton, the gap could also be regarded as the minimal time lag to 
digest nutrients [22]. Time lags with a gap have also been used 
extensively to model traffic flow dynamics [23], machine tool vi-
bration problem [24] and so on [25,26]. Lee et al. [27], using the 
Ott–Antonsen’s manifold reduction method [28,29], found that the 
variation of delay could greatly alter the dynamical behavior in a 
Kuramoto model with Gamma-distributed time lags in [0, +∞). 
This Letter offered a framework for studying the heterogeneity of 
delays. After some simulations, both supercritical and subcritical 
transition on the Ott–Antonsen’s manifold were observed.

On one hand, the mathematical mechanism of the criticality 
of the transition is not quite clear yet and requires further bi-
furcation analysis. On the other hand, when time lags are dis-
tributed in the interval [τ0, +∞) with a minimal responding time 
τ0 > 0, this is the case rarely investigated before. For example, 
the total delay τ may be the sum of a constant responding de-
lay τ0 and a Gamma distributed transmitting delay τ̃ ∼ �(n, T

n ), 
because the propagating time can be viewed as a period of await-
ing. The probability density function (PDF) of �(n, T

n ) is given by 
h(τ ) = 1

�(n)(T /n)n τn−1e− τ
T /n , τ > 0, where T is the mean value, T 2

n

the variance, 2√
n

the skewness and 6
n the excess kurtosis. As re-

gards the gap, the PDF of τ = τ0 + τ̃ is h(τ − τ0) as shown in 
Fig. 1(a). In this case, an interesting fact is that studying only 
the mean and variance of delays sometimes is insufficient. For in-
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Fig. 1. (a) h(τ −τ0), PDFs of the sum of τ0 = 2 and Gamma distribution τ̃ ∼ �(n, T
n )

with T = 3, n = 1, 5, 10. (b) Two PDFs (with the same mean and variance) of 
Gamma distribution with a gap, C1: (red, dashed) T = 3, τ0 = 7 with larger excess 
kurtosis; C2: (blue, solid) T = 7, τ0 = 3 with smaller excess kurtosis. n is suitably 
chosen such that the variance T 2/n = 5. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

stance, by varying n, T and τ0, one can still fix the expectation of 
total delay 〈τ 〉 = 〈τ̃ + τ0〉 = T + τ0, and its variance Var(τ ) = T 2

n
(see Fig. 1(b)). In this case, varying n alters the skewness or excess 
kurtosis [30], which involves the third-order or fourth-order cen-
tral moments. They are usually used to measure the “asymmetry” 
or the “peakedness” of probability distribution, respectively. Thus 
the gap τ0 may have certain effect on the system dynamics with-
out changing 〈τ 〉 and Var(τ ). To our best knowledge, the above 
two points of view are new and have not been well studied.

Motivated by the above two considerations, we investigate a 
variant of the Kuramoto model which describes the dynamics of 
an ensemble of globally coupled phase oscillators, with governing 
equation

θ̇i = ωi + k

N

N∑
j=1

sin[θ j(t − τi) − θi(t)] (1)

i = 1, 2, . . . , N . N stands for the total number of oscillators. θi(t) ∈
[0, 2π) is the phase of the ith oscillator and ωi is its natural fre-
quency, distributed according to some PDF g(ω), ω ∈ (−∞, +∞). 
k is the constant coupling strength. Time delays τi are statisti-
cally independent with ωi , and they are assumed to come from 
an ensemble τ = τ̃ + τ0 with τ̃ being subject to a general PDF 
h(τ ), τ ∈ [0, +∞) and τ0 a positive constant.

Some bifurcation results about system (1) could be obtained 
by analyzing a delay differential equation on the Ott–Antonsen’s 
manifold [29]. Here the delay differential equation undergoes a 
Hopf bifurcation at the trivial solution corresponds to that the 
coherent state is bifurcated out from the incoherent state in sys-
tem (1). In our earlier work [31], the center manifold reduction 
method [32–34] is employed to investigate this system without a 
gap. However, the calculations are tedious and heavily depend on 
a rather complicated decomposition of a Banach space and some 
Riemann–Stieltjes integrals. In this Letter, we make this approach 
much easier through the method of multiple scales [35–38] and 
give a relatively simple calculation process of the normal forms, by 
which we show that the transitions between coherent state and 
incoherent state are mediated by supercritical or subcritical Hopf 
bifurcations. With respect to Gamma distributed delays, we calcu-
late all bifurcation points in certain parameter spaces and discuss 
the effect of the gap. Finally, it is found that, when fixing 〈τ 〉 and 
Var(τ ), larger gap (or larger excess kurtosis, equivalently) not only 
decreases the bifurcation value, leads to a supercritical bifurcation 
hence avoids the existence of hysteresis loop, but also significantly 
increases in the number of coexisting coherent states.

2. Reduction

For the thermodynamic limit N → ∞, the continuity equation 
of system (1) is

∂

∂ t
f + ∂

∂ θ
(ζ f ) = 0 (2)

with a drift term ζ(ω, θ, t) = ω + k
2 i (e−i θ r − ei θ r∗). The asterisk 

here stands for the complex conjugate. The distribution density 
f (ω, θ, t) is defined in such way that at time t the fraction of oscil-
lators with frequency between ω and ω + dω and phase between 
θ and θ + dθ is given by f (ω, θ, t)dω dθ . The complex order-
parameter r(t), characterizing the degree to which the oscillators 
are bunched in phase, is defined by

r(t) = 〈ξ(t − τ )〉 =
+∞∫
τ0

ξ(t − τ )h(τ − τ0)dτ (3)

with

ξ(t) =
+∞∫

−∞

2π∫
0

f (ω, θ, t)ei θ dθ dω (4)

For reader’s convenience, we are about to restate the Ott–
Antonsen’s reduction of a system with distributed delay first de-
rived by Lee et al. [27]. Rewriting system (2) as

∂

∂ t
f + ∂

∂ θ

{[
ω + k

2 i
(e−i θ r − ei θ r∗)

]
f

}
= 0 (5)

and restricting the solutions f onto the Ott–Antonsen manifold{
f : f = g(ω)

2π

{
1 +

[ ∞∑
m=1

αm(ω, t)ei m θ + c.c.

]}}

with c.c. the complex conjugate of the formal terms, a reduced 
equation is obtained as the following equation, after equating the 
coefficient of the same harmonic terms.

α̇(ω, t) = −iωα(ω, t) + k

2
r∗ − k

2
rα2(ω, t) (6)

Obviously, from (4) we have ξ(t) = ∫ +∞
−∞ g(ω)α∗(ω, t)dω, then 

Eq. (3) yields

r(t) =
+∞∫
τ0

+∞∫
−∞

g(ω)α∗(ω, t − τ )dωh(τ − τ0)dτ (7)

For the sake of analysis, the distribution density g(ω) is as-
sumed to be Lorentzian

g(ω) = �

π [(ω − ω0)2 + �2] , −∞ < ω < +∞ (8)

with ω0 the median value and � the spread width. Note that the 
Lorentzian distribution is unimodal and usually viewed as an ap-
proximation of normal distribution.

Substituting (8) into (7) and using residue theorem yield [29]

r(t) =
+∞∫
τ0

α∗(ω0 − i�, t − τ )h(τ − τ0)dτ (9)

To ease the notations, we write α(ω0 − i�, t) as α(t), and let ω =
ω0 − i� in Eq. (6). Together with Eq. (9), we have

Proposition 2.1. Assume N → +∞, and g(ω) is Lorentzian, then the 
dynamical behavior of (1) on the Ott–Antonsen manifold is governed by

α̇(t) = −(iω0 + �)α(t) + k

2

+∞∫
τ0

α(t − τ )h(τ − τ0)dτ

− k

2
α2(t)

+∞∫
τ0

α∗(t − τ )h(τ − τ0)dτ (10)
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