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This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic 
nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with 
bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its 
discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is 
uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a 
limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All 
the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the 
vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and 
potentially problematic engineering consequences.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most familiar examples of low-dimensional chaotic flows occur 
in systems having one or more saddle points. Such saddle points 
allow homoclinic and heteroclinic orbits and the prospect of rigor-
ously proving the chaos when the Shilnikov condition is satisfied. 
Furthermore, such saddle points provide a means for locating any 
strange attractors by choosing an initial condition on the unstable 
manifold in the vicinity of the saddle point. Such attractors have 
been called “self-excited,” and they are overwhelmingly the most 
common type described in the literature.

Recently, many new chaotic flows have been discovered that 
are not associated with a saddle point, including ones without any 
equilibrium points, with only stable equilibria, or with a line con-
taining infinitely many equilibrium points [1–10]. The attractors 
for such systems have been called “hidden attractors” [11–17], and 
that accounts for the difficulty of discovering them since there is 
no systematic way to choose initial conditions except by extensive 
numerical search. Hidden attractors are important in engineering 
applications because they allow unexpected and potentially dis-
astrous responses to perturbations in a structure like a bridge or 
aircraft wing.

Here we introduce a new class of hidden attractor that occurs 
in a system in which the only equilibrium is an unstable node, and 
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we identify what may be the simplest example of such a system 
with a strange attractor. By “unstable node” we mean an equilib-
rium point whose eigenvalues are all real and positive. The system 
was found by extensive numerical search and appears to be ex-
tremely rare in the class of system studied, but it has a number 
of interesting and unusual properties including symmetry break-
ing, attractor merging, and multistability, as well as an attracting 
torus.

Section 2 describes the numerical search procedure, and Sec-
tion 3 describes the properties of the equilibrium point. Section 4
shows the variety of different dynamics and their bifurcations. Sec-
tion 5 illustrates examples of coexisting attractors, and Section 6
provides the evidence that these attractors are hidden. Finally, Sec-
tion 7 gives the conclusions.

2. Numerical search

Perhaps the simplest chaotic flow with a single equilibrium 
point is a jerk system, the most general quadratic form of which is 
given by

ẋ = y

ẏ = z

ż = f (x, y, z) = a1x + a2 y + a3z + a4 y2

+ a5z2 + a6xy + a7xz + a8 yz + a9 (1)
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System (1) has only one equilibrium point at (− a9
a1

, 0, 0) with 
eigenvalues λ that satisfy

λ3 − f zλ
2 − f yλ − fx = 0 (2)

where fx = a1, f y = a2 − a6a9/a1, and f z = a3 − a7a9/a1. Since 
the Routh–Hurwitz stability criterion gives the conditions for hav-
ing the real part of all eigenvalues negative, a transformation of 
Eq. (2) with λ → −λ gives the conditions for having them all posi-
tive. Thus Eq. (2) becomes −λ3 − f zλ

2 + f yλ − fx = 0, which after 
multiplying by −1 gives

λ3 + f zλ
2 − f yλ + fx = 0 (3)

Thus the conditions for the equilibrium to be unstable are f z > 0, 
fx + f y f z < 0, and fx > 0, or(

a3 − a7a9

a1

)
> 0

a1 +
(

a2 − a6a9

a1

)(
a3 − a7a9

a1

)
< 0

a1 > 0 (4)

An extensive numerical search involving millions of random com-
binations of the coefficients a1 through a9 and initial conditions 
subject to the constraints in Eq. (4) did not reveal any bounded so-
lutions with a largest Lyapunov exponent greater than 0.001. Thus 
it seems likely that system (1) does not admit chaotic solutions in 
the presence of such a fully unstable equilibrium.

Therefore, inspired by the Sprott A (Nose–Hoover) system 
[18–20], and using a form that has successfully given other chaotic 
flows with hidden attractors [1,2,5], system (1) was modified 
slightly according to

ẋ = y

ẏ = −x + yz

ż = a1x + a2 y + a3z + a4x2 + a5 y2

+ a6xy + a7xz + a8 yz + a9 (5)

System (5) has only one equilibrium point at (0, 0, −a9/a3) with 
eigenvalues λ that satisfy

λ3 −
(

a3 − a9

a3

)
λ2 + (−a9 + 1)λ − a3 = 0 (6)

Changing the variable λ → −λ gives

λ3 +
(

a3 − a9

a3

)
λ2 + (1 − a9)λ + a3 = 0 (7)

The Routh–Hurwitz stability criterion guarantees that the real part 
of all eigenvalues are positive provided(

a3 − a9

a3

)
> 0

(
a3 − a9

a3

)
(1 − a9) − a3 > 0

a3 > 0 (8)

For this case, many chaotic solutions were found in an extensive 
computer search, although they are still relatively rare. Perhaps the 
simplest such system [21] is given by

ẋ = y

ẏ = −x + yz

ż = z + ax2 − y2 − b (9)

with an appropriate choice of the parameters a and b and initial 
conditions. System (9) satisfies the conditions of Eq. (8) provided 
b > 0. With seven terms, this is actually a three-parameter sys-
tem, but for simplicity, the third parameter is taken as unity. The 
remainder of the paper is concerned with the properties of sys-
tem (9).

3. Equilibrium properties

By design, this system (9) has only one equilibrium at (0, 0, b)

with eigenvalues λ given by

λ3 − (b + 1)λ2 + (b + 1)λ − 1 = 0 (10)

whose roots are λ = 1, b/2 ±√
b2 − 4. Since one of the eigenvalues 

is +1, the equilibrium is always unstable, but the type of equi-
librium depends on b and is independent of a as summarized in 
Table 1 where � = b2 − 4 and ω = √

4 − b2.
Chaotic solutions occur for b > 1 and are most abundant at 

large b where the equilibrium is an unstable node. For a typical 
value of b = 4, the eigenvalues are λ1 = 3.732050808, λ2 = 1, λ3 =
0.267949192, and the corresponding eigenvectors are

v1 = ±(kx + 3.732050808ky)

v2 = ±kz

v3 = ±(kx + 0.267949192ky) (11)

Table 1
Types of equilibrium points for different values of the parameter b.

Parameter b Eigenvalues Type of equilibrium point

b < −2 1, (b ± √
�)/2 saddle node

−2 < b < 0 1, (b ± iω)/2 saddle focus
0 < b < 2 1, (b ± iω)/2 unstable focus
b > 2 1, (b ± √

�)/2 unstable node

Fig. 1. Regions of various dynamical behaviors for system (9) as a function of the 
bifurcation parameters a and b. The chaotic regions are shown in red, the pe-
riodic (limit cycle) and quasiperiodic (torus) regions are shown in blue, and the 
unbounded regions are shown in white. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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