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In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation 
reaction totally modifies the electron motion. The quantum corrections to the electron motion and 
the radiation reaction force can be independently small or large, depending on the laser intensity and 
wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles 
and strange attractors when radiation reaction dominates. This creates a new framework for high energy 
physics experiments on the interaction of energetic charged particle beams and colliding super-intense 
laser pulses.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

New regimes of light-matter interaction emerge with the in-
crease of laser power beyond petawatt, leading to radiation pres-
sure dominant acceleration of ions, bright coherent x-ray genera-
tion and electron–positron pair creation [1]. The next generation 
of high-power short-pulse lasers will soon reach the electromag-
netic radiation intensity of 1023 W/cm2 for a 1 μm wavelength [2], 
105 times greater than the relativistically strong intensity thresh-
old I0 = 1.37 ×1018 W/cm2. Then the electromagnetic emission by 
electrons will be substantial [1,3,4], making the electron dynamics 
strongly dissipative [5–8] and causing the laser energy fast conver-
sion to gamma-rays [9,10].

The laser intensity above 1023 W/cm2 brings novel physics [11]
(see Refs. [1,3,4,12–17] for details), where the electron (positron) 
dynamics is principally determined by radiation reaction force and 
quantum electrodynamics (QED) effects. The latter weaken the 
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electromagnetic emission of relativistic electrons, thus decreasing 
the radiation reaction force [18,19].

Even in the simple case of a standing wave, the electron dy-
namics is surprisingly complicated. In the magnetic field node 
plane, the electron motion is unstable [13], with the instability 
growth rate being about the electromagnetic field frequency. In a 
linearly polarized standing wave, the electrons are concentrated in 
the standing wave spatial periods [20–22]. The standing wave con-
figuration is widely used in the QED theory because the descrip-
tion is greatly simplified in the magnetic field node plane: there 
the electric field vector merely rotates in a circularly polarized 
or oscillates in a linearly polarized standing wave, with nonzero 
Poincaré invariants. In addition, in a standing wave formed by two 
colliding laser puses, the resulting electric field can be higher than 
that of one pulse, facilitating QED effects, as in the multi-beam 
configuration [23].

In this Letter we show that in the electron dynamics in a strong 
electromagnetic standing wave, the quantum corrections and the 
radiation reaction force can be independently small or large, thus 
dividing the parameter space into 4 domains. When radiation re-
action is significant, a strongly dissipative electron dynamics has 
limit cycles and strange attractors. Similar structures can be seen 
even in a transient standing wave formed by two colliding laser 
pulses.
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2. Radiation reaction

The electron dynamics in the electromagnetic wave is described 
by the equation

ṗ = e(E + β × B) + frad, frad = GefLL, (1)

where p = mecγeβ, β = v/c, γe = (1 − β2)−1/2; E and B are the 
electric and magnetic fields; e, me, v and p are the electron charge, 
mass, velocity and momentum, respectively; c is the speed of light 
in vacuum. The radiation reaction force in the Landau–Lifshitz [24]
form, fLL, is reduced by a factor Ge representing the radiation re-
action force weakening due to QED effects, following the approach 
of Refs. [11,9,14].

In the ultrarelativistic limit γe � 1, the radiation reaction force 
is

frad ≈ −εradGemecωβa2
Sχ

2
e . (2)

Here εrad = 4πre/3λ ≈ 1.18 × 10−8 (1 μm/λ); re = e2/mec2 ≈
2.82 × 10−13 cm is the classical electron radius; aS = eE S/meωc ≈
4.12 × 105(λ/1 μm) corresponds to the QED critical field E S =
αe/r2

e ; α = e2/h̄c is the fine-structure constant [25]; ω and λ are 
the electromagnetic wave frequency and wavelength. The relativis-
tic and gauge invariant parameter

χe = (γe/E S)[(E + β × B)2 − (β · E)2]1/2 (3)

characterizes the probability of a gamma-photon emission by an 
electron with momentum p. QED effects are negligible for χe � 1
and become strong for χe � 1.

The stronger QED effects, the less radiation is emitted. Accord-
ing to Ref. [18], the total radiated power is reduced by a factor 
depending on the parameter χe . Introduced in Eq. (2) this factor is 
written using Refs. [25–27] as follows:

Ge(χe) = −
∞∫

0

3 + 1.25χeξ
3/2 + 3χ2

e ξ3

(
1 + χeξ3/2

)4
Ai′(ξ)ξdξ, (4)

where Ai(x) is the Airy function. The discreet nature of the pho-
ton emission is neglected (see Refs. [28,29,14]). For computations 
we approximate Eq. (4) by Ge(χe) ≈ (1 + 18χe + 69χ2

e + 73χ3
e +

5.806χ4
e )−1/3, accurate within 10−3 for 0 < χe < 10, with the 

same asymptotics at 0 and ∞ as Eq. (4).

3. Charge in a standing wave

We consider the electric field of the one-dimensional (1D) cir-
cularly polarized electromagnetic standing wave in the magnetic 
field node plane: a = −a(i2 cosτ + i3 sinτ ), where i2 and i3 are 
orthogonal unit vectors perpendicular to the standing wave axis; 
τ = ωt, q = p/mec, and a = eE/meωc = (I/I0)

1/2(λ/1 μm). We 
change to the rotating coordinate system [30],

q‖ = q2 cosτ + q3 sinτ , q⊥ = q2 sinτ − q3 cosτ . (5)

Eq. (3) yields χe = (a/aS )(1 + q2
1 + q2⊥)1/2.

Substituting Eq. (5) into Eq. (1) and neglecting the electron mo-
mentum along the standing wave axis, q1 � (q2

2 +q2
3)

1/2, we obtain

q̇|| + q⊥ = a − εrad Ge(χe)a
2q||q2⊥/γe, (6)

q̇⊥ − q|| = −εrad Ge(χe)[γea + a2q⊥(1 + q2⊥)/γe], (7)

where the dot denotes differentiation with respect to τ . Solu-
tions of this system asymptotically tend to steady state (provided 
εrad > 0). Following Ref. [6], from Eqs. (6)–(7) we find the criti-
cal electromagnetic amplitude determining the radiation reaction 
strength,

Fig. 1. The characteristics of the electron stationary motion in a rotating electric 
field. Curves: the field dimensionless amplitude a (gray dashed), ditto normalized 
to aRQ = [εradGe(χe)]−1/3 (magenta), χe parameter (black), factor Ge(χe) (red). Do-
mains I–IV and hatched area: see the text. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

aRQ = [εradGe(χe)]−1/3. (8)

Radiation reaction is negligible for a � aRQ and becomes sub-
stantial for a � aRQ. In this limit, for q⊥ ∝ aRQ with a factor 
of the order of unity, we estimate the χe parameter as χm ≈
aRQq⊥/aS ≈ a2

RQ/aS corresponding to Gm = Ge(χm). This gives the 
critical wavelength at which radiation reaction becomes substan-
tially quantum,

λRQ = 9πre/2α3χ3
mG2

m. (9)

For χm = 1 (Gm ≈ 0.18), we obtain IRQ = a2
RQ I0 = 1.75 × 1024

W/cm2 and λRQ = 3.1 μm.
Taking d/dτ = 0 in Eqs. (6)–(7), corresponding to the steady 

state solution [30], we obtain algebraic dependences of q‖, γe
on q⊥ ,

q2‖ = (a − q⊥)(1 + aq⊥)(1 + q2⊥)/[q⊥(1 + aq⊥) − a], (10)

γ 2
e = a2q⊥(1 + q2⊥)/[q⊥(1 + aq⊥) − a], (11)

and the expression

a − q⊥ = [εradGe(χe)]2a2q3⊥(1 + aq⊥), (12)

implicitly defining q⊥ as a function of a, εrad, aS . Thus all the 
dependent variables are functions of the electromagnetic wave in-
tensity, I = E2c/4π , and wavelength, λ. In this way Fig. 1 shows 
the χe parameter, corresponding factor Ge(χe), and the electro-
magnetic standing wave amplitude normalized to aRQ.

The radiation reaction force becomes substantial when a �
0.5aRQ while QED effects come into play at χe � 0.2, which cor-
responds to the radiation reaction force weakening with the factor 
Ge � 0.5. The intersection of the curves a/aRQ = 0.5 and χe = 0.2
gives the characteristic intensity I∗RQ ≈ 1.5 × 1023 W/cm2, and 
wavelength λ∗

RQ ≈ 0.76 μm, within an order of magnitude of the 
estimate presented above. At this point, four different domains 
meet, Fig. 1: I. radiation reaction is negligible; II. QED effects dom-
inate while the radiation reaction force is small; III. radiation re-
action is mostly classical; IV. the radiation reaction force and QED 
effects are both strong. Beyond χe � 1, the model is not applicable 
because of the discrete nature of electron emission.

4. Phase space

In order to generalize the picture given by Eqs. (6)–(7) and in-
vestigate the electron dynamics with radiation reaction and QED 
effects, we numerically solve Eqs. (1), (3), (4). In our setting the 
electric field oscillates at antinodes, x = ±nλ/2, and vanishes at 
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