
Physics Letters A 379 (2015) 2055–2061

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Fractal electrodynamics via non-integer dimensional space approach

Vasily E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 April 2015
Received in revised form 11 June 2015
Accepted 13 June 2015
Available online 17 June 2015
Communicated by C.R. Doering

Keywords:
Fractal media
Electrodynamics
Non-integer dimensions

Using the recently suggested vector calculus for non-integer dimensional space, we consider electrody-
namics problems in isotropic case. This calculus allows us to describe fractal media in the framework 
of continuum models with non-integer dimensional space. We consider electric and magnetic fields 
of fractal media with charges and currents in the framework of continuum models with non-integer 
dimensional spaces. An application of the fractal Gauss’s law, the fractal Ampere’s circuital law, the 
fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. 
Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective 
refractive index of non-integer dimensional space is suggested.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractal electrodynamics based on continuum models of fractal 
distribution of charges, currents and fields has been suggested in 
[1–5] ten years ago. These continuum models use the concept of 
power-law density of states and an application of fractional-order 
integration. It has been proved that D-order integration is con-
nected with D-dimensional integration [4]. Then these continuum 
models of fractal electrodynamics have been applied and devel-
oped in two directions: (a) fractional integral models by Baskin and 
Iomin [6,7], by Ostoja-Starzewski [8] to describe anisotropic fractal 
cases; (b) fractional (non-integer) dimensional models by Muslih, 
Baleanu and coauthors [9–11], by Zubair, Mughal, Naqvi [12–16], 
by Balankin with coauthors [17], to describe an anisotropic case, 
multipoles, and electromagnetic waves in fractional space. Effective 
continuum models of fractal electrodynamics, which is considered 
in papers [9–17], are based on Stillinger and Palmer–Stavrinou 
generalizations of the scalar Laplacian that are suggested in [18]
and [19], respectively. In these papers [18,19], the authors have 
proposed only the second order differential operators for scalar 
fields in the form of the scalar Laplacian in the non-integer di-
mensional space. The first order operators such as gradient, diver-
gence, curl operators, and the vector Laplacian are not considered 
in [18,19].

Possibility to use only the scalar Laplacian in non-integer di-
mensional space approach greatly restricts us in application of 
continuum models of fractal media. For example, Stillinger’s form 
of Laplacian cannot be used for the electric field E(r, t) and the 
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magnetic fields B(r, t) in electrodynamic continuum models with 
non-integer dimensional spaces.

In recent paper [21], it was suggested a generalization of vector 
differential operators of first orders (gradient, divergence, curl op-
erators) and the vector Laplacian for non-integer dimension spaces. 
This allows us to extend the scope of possible applications of con-
tinuum models with non-integer dimensional spaces. Using this 
new tool we can describe isotropic fractal media by using the non-
integer dimensional space approach.

For anisotropic fractal case, an attempt to suggest D-dimen-
sional vector operations of first order has been presented in the 
works [12–17]. In these papers, the gradient, divergence, and curl 
operators are suggested only as approximations of the square 
of the Palmer–Stavrinou form of Laplace operator. Recently [22]
a generalization of gradient, divergence, and curl has been sug-
gested without any approximation. The strict approach to contin-
uum models of anisotropic fractal media by the vector calculus on 
non-integer dimensional space has been described in [22], where 
a review of different approaches are also suggested.

It should not be confused fractal electrodynamics and fractional 
electrodynamics that is based on fractional-order vector calculus 
[23]. Note that first time the fractional calculus has been applied 
in the electrodynamics by Joseph Liouville about two hundred 
years ago [24]. An attempt to use a fractional calculus in electro-
dynamics by introducing some differential vector operations was 
made by Engheta [25–28]. In these papers, the fractional integral 
vector operations and fractional generalization of integral theo-
rems of Green, Stokes and Gauss are not considered. A rigorous 
self-consistent formulation of fractional differential and integral 
vector calculus was suggested in [23]. The fractional-order differ-
ential and integral vector operations are mutually agreed by the 
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use of the Caputo fractional derivatives as an inverse operation 
to the Riemann–Liouville fractional integration. Using this inter-
consistency of fractional differential and integral vector operators, 
the fractional Green’s, Stokes’ and Gauss’s theorems have been are 
proved. We can note that the theory of fractional-order derivatives 
and integrals has be applied to several specific electromagnetic 
problems (for example, see [29–37]).

It should be also noted that the term “fractal electrodynamics” 
is used in the narrow sense in engineering [38–40] to describe 
fractal antennas, arrays and apertures and electromagnetic wave 
scattering from fractal surfaces. We use this term in a broader 
sense to the theory of fractal distribution of charges, currents, 
fields, and to electrodynamics of fractal media, and electromag-
netic fields on fractal sets.

In this paper, we demonstrate an application of the vector cal-
culus on non-integer dimensional space, which is suggested in 
[21], to fractal electrodynamics in isotropic case. We give an ap-
plication of the fractal Gauss’s law, the fractal Ampere’s circuital 
law, the fractal Poisson equation for electric potential, and equa-
tion for fractal stream of charges.

2. D-dimensional integration and differentiation

Let us give some introduction to noninteger-dimensional in-
tegration and differentiation of integer orders (for details, see 
[18–22]).

The D-dimensional integration (see [18] and Section 4 of [20]) 
for scalar functions f (r) = f (|r|) can be defined in terms of ordi-
nary integration by the expression

∫
dD r f (r) =

∫
�D−1

d�D−1

∞∫
0

dr rD−1 f (r), (1)

where we can use∫
�D−1

d�D−1 = 2π D/2

�(D/2)
= S D−1. (2)

For integer D = n, equation (2) gives the well-known area Sn−1 of 
(n − 1)-sphere with unit radius.

As a result, the explicit expressions [20] of D-dimensional inte-
gration for arbitrary non-integer D has the form

∫
dD r f (|r|) = 2π D/2

�(D/2)

∞∫
0

dr rD−1 f (r). (3)

This equation reduced D-dimensional integration to ordinary one-
dimensional integration. It is obvious that the linearity and trans-
lation invariance follow from linearity and translation invariance of 
ordinary integration. The scaling and rotation covariance can also 
be derived from equation (3).

In the continuum models of fractal media, it is convenient 
to work with the physically dimensionless variables x/R0 → x, 
y/R0 → x, z/R0 → x, r/R0 → r, that yields dimensionless integra-
tion and dimensionless differentiation in D-dimensional space. In 
this case the physical quantities of fractal media have correct phys-
ical dimensions.

The volume of D-dimensional ball V D of radius R Is given by 
the expression

|V D | = π D/2

�(D/2 + 1)
R D , (4)

and surface area of the d-dimensional sphere Sd of radius R is 
given by

|Sd| = 2π(d+1)/2

�((d + 1)/2)
Rd. (5)

In general, the dimension d of the boundary Sd = ∂V D of the 
region V D of fractal medium and the dimension D of the region 
V D are not related by the equation d = D − 1. The difference be-
tween D and d defines a radial dimension αr = D −d of the fractal 
medium. If the radial dimension is equal to one, then (5) can be 
represented by

|Sd| = 2π D/2

�(D/2)
R D−1. (6)

The vector differential operators for non-integer dimension 
have been derived in [21] by analytic continuation in dimension 
from integer n to non-integer D .

For simplification we will consider two following cases:

1) Spherically symmetric case of fractal media, where scalar field 
ϕ and vector fields E, B are independent of angles

ϕ(r) = ϕ(r), E(r) = Er(r)er, B(r) = Br(r)er,

where er = r/r, r = |r| and Er = Er(r) Br = Br(r) are the radial 
component of E and B. In this case, we will work with rotation-
ally covariant functions only. This simplification is analogous to the 
simplification of integration over non-integer dimensional space 
suggested in [20].

2) Axially (cylindrical) symmetric case of fractal media, where the 
fields ϕ(r) and E(r) = Er(r) er , B(r) = Br(r) er are also axially sym-
metric. We assume that z-axis is directed along the axis of sym-
metry [21].

In [21], the equations of differential operators for non-integer 
D have been proposed in the following forms, where m = 1
and m = 2 describe spherically and axially (cylindrical) symmet-
ric cases, respectively.

The divergence in non-integer dimensional space for the vector 
field E = E(r) is

DivD
r E = ∂ Er(r)

∂r
+ D − m

r
Er(r). (7)

The gradient in non-integer dimensional space for the scalar 
field ϕ = ϕ(r) is

GradD
r ϕ = ∂ϕ(r)

∂r
er . (8)

The curl operator for the vector field E = E(r) is equal to zero, 
CurlD

r E = 0.
The scalar Laplacian in non-integer dimensional space for the 

scalar field ϕ = ϕ(r) is

S�D
r ϕ = DivD

r GradD
r ϕ = ∂2ϕ

∂r2
+ D − m

r

∂ϕ

∂r
. (9)

The vector Laplacian in non-integer dimensional space for the 
vector field E = Er(r) er is

V �D
r E = GradD

r DivD
r E

=
(∂2 Er(r)

∂r2
+ D − m

r

∂ Er(r)

∂r
− D − m

r2
Er(r)

)
er . (10)

For D = 3 equations (7)–(10) give the well-known expressions 
for the gradient, divergence, scalar Laplacian and vector Laplacian 
in R3 for fields ϕ = ϕ(r) and E(r) = Er(r) er .

The suggested operators allow us to reduce D-dimensional vec-
tor differentiations (7)–(10) to usual derivatives with respect to 
r = |r|. As a result, we can reduce partial differential equations 
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