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The so-called “bucket transport” of energetic ions — the spatial mixing of these ions due to spatial dis-
placement of resonances — is studied with special attention to quasi-steady-state magnetic perturbations. 
A Hamiltonian formalism suitable to the case when the resonance displacement results from the colli-
sional slowing down of the particles and the temporal evolution of the safety factor profile is suggested. 
The energy flux produced due to the bucket transport is shown to be considerable in configurations with 
low shear. It is shown that the bucket transport flux associated with magnetic islands tends to be lo-
calized at some distance from the islands. The bucket transport caused by perturbations with non-zero 
frequencies is also discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quasi-steady-state perturbations, i.e., perturbations with negli-
gible rotation in the plasma frame, which violate the symmetry 
of magnetic configurations, are often observed in tokamak plas-
mas. In many cases they lead to the formation of magnetic islands 
around the q = m/n flux surface, where q is the tokamak safety 
factor (the magnetic winding number), m and n are the poloidal 
and toroidal numbers of the perturbation, respectively. The nature 
of these perturbations and concomitant phenomena can be differ-
ent. Well-known examples are the neoclassical tearing modes [1]
and the sawtooth oscillations [2], which are associated with large-
scale perturbations resulting in the formation of low-n islands. 
It seems that low-frequency activity with n = 1, which accompa-
nies avalanches of high-frequency instabilities driven by energetic 
ions (see, e.g., Refs. [3,4]), also has zero frequency in the plasma 
frame. On the other hand, when the q-profile slightly exceeds the 
resonant magnitude q = m/n, quasi-static deformations of flux sur-
faces occur; in particular, the infernal mode [5] with (m, n) = (1, 1)

takes place when the q-profile is flat and slightly exceeds unity; 
a (1, 1)-mode may also occur in reversed-shear discharges with 
qmin slightly exceeding unity [6]. Low-n static magnetic pertur-
bations can also be produced by external coils with the aim to 
suppress or mitigate ELMs (edge-localized modes) [7].
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The purpose of this Letter is to study the so-called “bucket 
transport” — the plasma mixing due to the displacement of en-
ergetic (fast) ions trapped in the resonance when the spatial loca-
tion of this resonance changes. The analysis is restricted mainly to 
static perturbations, the case of perturbations with finite frequency 
(ω �= 0) is only briefly discussed. Well-passing particles (for which 
the longitudinal velocity v‖ ≈ const) are considered.

Note that the bucket transport was studied in Refs. [8–11]. In 
Refs. [8–10] the transport caused by frequency chirping was con-
sidered. In contrast to this, we study the transport caused by col-
lisional slowing down of the particles and/or temporal evolution 
of the plasma current. The influence of collisions on the transport 
was studied also in Ref. [11], where the analysis was restricted to 
studying the bucket motion due to the infernal mode; the motion 
of non-resonant particles, which, in general, plays an important 
role in the particle mixing, was not considered. The possibility that 
the particles trapped in the wave move in radial direction due to 
collisions was mentioned in an earlier work [12] (where this effect 
was called the “conveyor belt”).

2. Hamiltonian formalism

We proceed from the following Lagrangian differential form of 
the guiding centre motion [13]:

� =
(e

c
A + M v‖b

)
· dx + Mc

e
μd� − E dt, (1)

where x is the guiding centre position, � is the gyrophase, e, M , 
E , and μ are the charge, mass, energy, and magnetic moment of 
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the particle, respectively, b = B/B , B is the magnetic field, A is 
its vector potential, and we have assumed that there is no electric 
field (we consider quasi-steady-state perturbations in this section).

As μ and E are both conserved, we can ignore the correspond-
ing terms of the differential form and concentrate on simplifying 
the remaining term. We use magnetic coordinates (ψ, ϑ, ϕ) (where 
ψ is the toroidal flux, ϑ and ϕ are the poloidal and toroidal an-
gles, respectively). Then we can represent the equilibrium mag-
netic field in the form (see, e.g., [14])

B0 = ∇ψ × ∇ϑ + ∇ϕ × ∇ψp = ∇ × (ψ∇ϑ − ψp∇ϕ) (2)

and take the gauge A0ϑ = ψ , A0ϕ = − 
∫

dψ ι(ψ) and A0ψ = 0 for 
its vector potential A0, where the subscripts denote the covari-
ant components, ψp is the poloidal magnetic flux, and ι = q−1 =
dψp/dψ . We assume that ε = r/R0 � 1 (with r the radial coordi-
nate and R0 the radius of the magnetic axis) and that B̃‖/B̃⊥ � 1, 
where B̃‖ and B̃⊥ are the longitudinal and transversal components 
of the magnetic perturbation, respectively. Then we can choose the 
gauge

Ã = −α(ψ)B0 R2
0 cos(mϑ − nϕ)∇ϕ (3)

for the perturbation, where α characterizes the perturbation am-
plitude, B0 = B(r = 0); indeed, one can show that this choice pro-
vides B̃‖/B̃⊥ ∼ ε . We neglect the contribution of the perturbation 
to b (on varying the differential form, one can see that the b-term 
is responsible for the particle drift across the field lines) and retain 
the perturbation only in the A-term responsible for the longitudi-
nal motion. Finally, we neglect bϑ and bψ (in comparison with bϕ ) 
and take Bϕ ≈ B0 R0. After normalization by eB0/c, we write equa-
tion (1) in the form

� = J dϑ − H dϕ, (4)

where J = ψ/B0 is the flux surface cross-section square divided by 
2π ( J = κr2/2 when the cross-section is elliptical with the elon-
gation κ ),

H = H0( J , θ) + R2
0α( J ) cos(mϑ − nϕ), (5)

H0 =
J∫

0

d J ι( J ) − ρ‖R0, (6)

ρ‖ = v‖/ωB , ωB = eB/(Mc), v‖ is the longitudinal velocity of the 
particle.

We observe that the differential form � corresponds to a one-
dimensional Hamiltonian system, with ϑ playing the role of the 
coordinate, J the momentum, and H the Hamiltonian. The toroidal 
angle ϕ plays the role of time. If we keep only the first term in 
H0 and take α = 0, Hamilton’s equations describe the unperturbed 
magnetic field lines. On adding the last term of H , we obtain equa-
tions of the perturbed field lines. The second term of H0 describes 
the particle drift across the magnetic field. Note that the perturba-
tion in Eq. (5) (α �= 0) does not lead to chaos when ρ‖ = 0 because 
in this case the Hamiltonian possesses symmetry in magnetic co-
ordinates.

It is known that the collisional slowing down does not affect 
the equations for ẋ (x is the guiding centre position). Therefore, 
the Hamiltonian equations

dϑ

dϕ
= ∂ H

∂ J
,

d J

dϕ
= −∂ H

∂ϑ
(7)

remain true in the presence of the slowing down at every point 
of the particle trajectory if we take the appropriate magnitude of 
the particle velocity v . Now let us consider an ensemble of well 
passing particles launched at the same time from the same toroidal 

angle ϕ . The quantities v and ϕ are connected with the time t by 
the relations

ϕ̇ = v‖/R, v̇ = −νs v, (8)

where R is the distance to the axis of symmetry, νs is the slowing-
down frequency. Neglecting weak fast variations of v‖/R , we can 
consider v as a function of ϕ for the particles of the ensemble. 
We conclude that the motion of these particles is described by the 
Hamiltonian (5) but with v (and thus ρ‖) depending on ϕ .

Then we perform a canonical coordinate transformation, re-
placing ( J , ϑ) with action–angle variables of the Hamiltonian H0, 
which we denote as (I, θ) (one can show that the difference be-
tween I and J , as well as between θ and ϑ is ∼ �b/r, where 
�b ∼ qρ/κ is the radial deviation of the orbit from the flux sur-
face). In the action–angle variables, the Hamiltonian H0 takes the 
form

H0 = H0(I,ϕ) =
I∫

0

dI ι∗(I,ϕ). (9)

Here ι∗ = dθ/dϕ , the dependence on ϕ appears only when the 
collisional slowing down is taken into account.

The quantity ι∗ differs from ι due to toroidal precession. The 
calculation of the toroidal precession is rather cumbersome; it re-
quires knowing B with the accuracy of ε2. Following Ref. [15], we 
write

ι∗ =
〈

dϑ

dϕ

〉
= 1

q̄

(
1 − ωpr

ωϕ

)
, (10)

where the angular brackets denote time averaging, q̄ = ∮
dϑ q/(2π)

with the integral taken along the particle orbit, ωϕ = 〈ϕ̇〉, ωpr is 
the toroidal precession frequency given by

ωpr = ξ v2/(R2
0ωB0) (11)

with |ξ | � 1. The coefficient ξ is determined by the q- and pres-
sure profiles, the flux surface shape and other factors; it is negative 
in circular plasmas with low β (β = 8π p/B2, p is the plasma pres-
sure), becoming more negative with the increase of β , but it may 
be positive at strong plasma elongation and low β , see [16].

It should be mentioned that when H0 depends on ϕ , the trans-
formation from ( J , ϑ) on (I, θ) depends on ϕ , too, and this depen-
dence results in an additional term depending on θ . However, we 
neglect this term because it is very small, ∼ qrR0νs/ωB .

In the action–angle variables the perturbation is no longer 
single-harmonic because of the toroidal drift of the particle. How-
ever, for the sake of simplicity we will disregard the satellite har-
monics of the perturbation, as well as the spatial dependence of α. 
Neglecting the difference between θ and ϑ in the perturbation 
term of Eq. (5), we conclude that the resonance condition is

ι∗(I) = n/m. (12)

Assuming that the ι-profile in the vicinity of the resonance point 
can be approximated by a linear function of I , we write Eq. (5) in 
the form

H = ι′∗(I − Ires)
2/2 + R2

0α cos(mθ̄ ), (13)

where θ̄ = θ − (n/m)ϕ , Ires is I at the resonance given by Eq. (12), 
prime denotes derivative in I .

One can see that the Hamiltonian (13) is reduced to that stud-
ied in Ref. [8]:

H = p2/2 − Â cos[q − φ(t)], (14)
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