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The self-consistent problem of the frequency synchronization of counter-propagating waves in a ring 
laser is rigorously solved. An intrinsic nonlinear mechanism of the phase coupling between the waves 
is considered for the first time. This ineradicable coupling is provided by modulation of the population 
difference of the energy levels of the active medium atoms in the electromagnetic field of two counter-
propagating waves. The theoretical limit for the range of phase locking between the counter-propagating 
waves is established. The general equation of phase synchronization is obtained from the solution of 
a self-consistent problem. The frequency-dependent boundaries of the synchronization band calculated 
in the framework of this approach show good agreement with experimental results published in the 
literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization or phase locking is a well-known phenomenon 
common to all coupled oscillators. The interest in investigating 
this fundamental phenomenon in quantum systems is increased 
due to the rapid development of ring lasers. Nowadays ring lasers 
are widely used in high precision experimental research in various 
fields of applied and fundamental physics.

In the cavity of a ring laser two light waves traveling in the 
opposite directions are generated. In the idealized situation of 
identical conditions for the counter-propagating waves both the 
frequencies and intensities of these waves are the same. The equal-
ity of the frequencies is violated if some source of anisotropy is 
introduced, say, by imposing a magnetic field or by rotating the 
cavity. This asymmetry causes a beat frequency �ω, which can be 
measured with a high precision. However, in case of small pertur-
bations, that is, of small �ω values, the accuracy of measurements 
is restricted by the effect of synchronization. The great majority of 
publications devoted to investigation of this phenomenon are re-
lated to one of the most important applications of the ring laser, 
namely to its usage as a laser gyroscope sensor (see, for exam-
ple, [1–14]).

The counter-propagating waves in a ring laser can be regarded 
as a system of coupled auto-oscillators. We can investigate the gen-
eral phenomenon of synchronization in ring lasers on the example 
of a laser gyroscope without loss of generality. Our choice of this 
special system is due to the fact that almost all known experimen-
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tal results regarding the locking of oscillators’ frequencies refer to 
measurements of ring lasers’ characteristics.

The operation of such devices is based on the Sagnac effect. 
When a ring cavity is rotated about the axis perpendicular to the 
cavity’s plane, a certain difference �ω between the frequencies of 
the counter-propagating waves appears which is proportional to 
the angular velocity � of rotation: �ω = μ�. The value of μ factor 
depends on the device parameters: μ = 4S/(λL), where L is the 
cavity perimeter (the optical path), S is the area enveloped by the 
loop. This expression can be written in an equivalent form by us-
ing the momentary phase difference ϕ of the counter-propagating 
waves:

�ω = ϕ̇. (1)

Here the dimensionless scale factor μ is included in ϕ̇ . If the laser 
gyroscope rotates with an angular velocity smaller than some crit-
ical value called the lock-in threshold, the mutual synchronization 
of the frequencies is observed [1] – the beat frequency equals zero.

The phenomenon of the counter-propagating waves phase-
locking in a ring laser is caused by their mutual coupling. In the 
literature (see, for example, [2–13]) the principal (and sometimes 
the sole) source of coupling is assigned to mutual scattering of 
each beam’s energy in the direction of the other. While construct-
ing a mathematical model of a ring laser, the existence of a linear 
in amplitude coupling between the counter-propagating waves is 
usually assumed. This coupling can arise if some portion of one 
wave is scattered in the direction of the other by an occasional tiny 
obstacle. The scattered field is considered in [2–13] as a source 
in the wave equations for the fields of the counter-propagating 
waves:
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where j, j′ = r, l (r, l denote the waves propagating clockwise and 
counterclockwise, respectively), Q j is the quality factor of the 
cavity for j-wave, P j is the polarization of the nonlinear active 
medium induced by the field of j-wave, r̄ j = r j exp{iε j} are com-
plex reflection indexes.

Such equations for the counter-propagating waves are usually 
solved by successive approximations, and an expression for the 
beat frequency is obtained already in the zeroth approximation 
(see, for example, [3–5]):

ψ̇ = � + (c/L){rr(Er/El) sin(ψ − εr)

+ rl(El/Er) sin(ψ + εl)}. (3)

The relevance of this approach, which leads to the phase-
locking of the counter-propagating waves even in a passive cav-
ity (in the absence of generation), will be discussed elsewhere. 
Here we only note that the above-mentioned conclusion regard-
ing the phase-locking in a passive cavity contradicts to the com-
monly accepted definition of the synchronization effect [15]. Syn-
chronization is usually understood as adjusting of frequencies and 
phases of two (or more) auto-oscillators by virtue of a weak in-
teraction among them. It is a fundamental nonlinear phenomenon, 
which arises as a result of interaction of auto-oscillating systems. 
A ring cavity becomes an auto-oscillating device (a laser) only if 
the pumping energy exceeds the losses of one or several modes of 
the cavity. In this case the properties of oscillations (their shape, 
amplitude, and frequency) are determined by the system itself, and 
do not depend on the initial conditions.

The aim of this publication is a discussion of the entirely non-
linear mechanism of the phase coupling between the generated 
counter-propagating waves, which appears only when the oscillat-
ing system is involved into a nonlinear regime of self-sustained 
oscillations. To explain the phase coupling between the counter-
propagating waves, we have no need in commonly used arbitrary 
artificial assumption of scattering some portion of energy from one 
wave to the other by imperfections of the cavity, which in principle 
can be eliminated. The natural mechanism of coupling discussed in 
this paper establishes theoretical limit to the width of the lock-in 
interval. It is provided by the parametric modulation in space and 
time of populations of the active medium energy levels, which is 
caused by the light wave. This modulation brings to life the waves 
of polarization on combined frequencies and strongly influences 
regimes of the ring laser radiation.

2. The problem setting

We consider a ring laser with an intercavity cell of length H
containing a non-uniformly broadened active medium. According 
to the experiments in which the phenomenon of lock-in was in-
vestigated, we restrict ourselves to a single-mode approximation. 
This means that the waves propagating clockwise and counter-
clockwise have the same longitudinal index, but their frequencies 
ω j and amplitudes E j(r, t) may differ from one another ( j = r, l). 
We represent the intercavity electromagnetic field as a superposi-
tion of the counter-propagating waves’ fields:

E(r, t) = Er(r, t) + El(r, t)

= Er(r)exp{−iωrt + iφ0r} + El(r)exp{−iωlt + iφ0l}
+ c. c. (4)

Fig. 1. Dependencies of real (left) and imaginary (right) parts of polarization coef-
ficients Z , β and θ on detuning for the case of equal frequencies of the counter-
propagating waves (single isotope).

Fig. 2. Dependencies of real (left) and imaginary (right) parts of polarization coeffi-
cients Z , β , and θ on detuning (two isotopes).

where E j(r, t) are slowly varying amplitudes of the fields, and φ0 j
are their initial phases ( j = r, l).

The field inside the cavity satisfies the wave equation
(
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where � is the Laplace operator.
In a ring laser with rather large perimeter of the cavity, a 

single-mode generation is possible only at a sufficiently small ex-
cess of pumping over the threshold value and, as a consequence, 
at small radiation intensity. This allows us to restrict the calcula-
tion of polarization to the third order of the perturbation theory. 
In this case

P(r, t) = Pr(r)exp{−iωrt} + Pl(r)exp{−iωlt}
+ Plr(r)exp{−i(2ωl − ωr)t}
+ Prl(r)exp{−i(2ωr − ωl)t} + c. c. (6)

We represent the polarization at frequencies ωr , ωl as follows:

2π P j(r)exp{−iω jt}
= (1/k)K

{
Z j − β j I j − θ j′ I j′

}
E j(r)exp{−iω jt} + c. c. (7)

The specific form of polarization coefficients is analytically calcu-
lated with the help of the traditional scheme of solving the sys-
tem of equations for the elements of the density matrix [17]. All 
the calculations are performed for the first time in a closed form 
(without approximations). Here we present the graphs of real and 
imaginary parts of the coefficients for the case of equal frequen-
cies of the counter-propagating waves (see Figs. 1, 2). The calcu-
lations are performed for the following values of parameters: λ =
0.6328 μm; the half-widths of the homogeneous line of the transi-
tion γab = 104 MHz; the half-widths of the transition energy lev-
els a and b are γa = 14 MHz, γb = 35 MHz respectively; Doppler 
broadening ku = 1000 MHz. For the case of 50%-mixture of 20Ne 
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