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We present new results for time-independent solutions for a Schrödinger equation with noninteger
dimension by considering different, harmonic and anharmonic, forms for the potential energy. The
solutions obtained for these potentials are exact and expressed in terms of the special functions such
as Laguerre and Gegenbauer polynomials, associated Legendre functions, and hypergeometric functions.
Graphical comparison of the probability density function with the ones for two-dimensional and

three-dimensional case is given. We derive the mean values rβ sinδ θ for the harmonic oscillator in
noninteger dimensions, which may be of interest in the perturbation theory for calculation of energy
corrections. We consider anharmonic Kratzer potential energy function and we obtain bound and
scattering states. Exact results in case of different forms of θ-dependent potentials are presented. In
addition, they can be connected to rich variety of situations which enable us to model anisotropic
interactions in real space.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The idea of fractional dimension introduced by Hausdorff has
attracted the attention of several researchers and became widely
used after the pioneers works of Mandelbrot [1] about the frac-
tal nature of different phenomena in many fields of science. In
this context, extensions of the evolution equations to noninte-
ger (fractional) dimensional space have received special atten-
tion, in particular the Schrödinger equation [2–12] due to their
successful applications in several contexts. For instance, optical
spectra and excitonic properties of anisotropic systems, the exci-
tonic states and absorption spectra in quantum wells [13–15], the
study of donor and acceptor properties in semiconductor super-
lattices [16], quantum-confined semiconducting heterostructures
[17], non-crystalline solids [18,19], the study of impurity levels in
semiconducting heterostructures [20], polaron confined to a rect-
angular quantum well [21], are just a few examples of phenomena
that could be adequately modeled by noninteger partial differen-
tial equations. These situations have been investigated by differ-
ent approaches. One of them involves the presence of fractional
derivatives [7] and the other uses the modified spatial opera-
tor [22]:
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where α represents a noninteger dimension. Note that α = 2 re-
covers the Laplacian in polar coordinates and α = 3 leads us to
the Laplacian in spherical coordinates, without the angular vari-
able ϕ . The noninteger dimension present in Eq. (1) can be related
to the degree of confinement of the system. In this sense, studies
of He [13,14] enables, the originally anisotropic or confined inter-
actions in three-dimensional space, to consider as isotropic and
unconfined interactions in an environment of fractional dimen-
sion. Similarly, in [21], a noninteger-dimensional space approach
was applied to the case of a polaron confined in a rectangu-
lar quantum well, where the real confined polaron plus quantum
well system in real space is investigated as an unconfined po-
laron in noninteger-dimensional bulk. Spatial operator of form (1)
was also used by Eid et al. in case of Coulomb potential energy
function of form 1

rβ−2 (2 � β � 4) [2], and in case of a frac-
tional-dimensional oscillator [3], as well as by Lucena et al. [5] and
Martins et al. [6], to investigate the fractional diffusion equation
and time fractional Schrödinger equation in noninteger dimen-
sions, respectively. It is worth to mention that the generalization
of Laplacian and the use of fractional operators for the modeling
of diffusion on fractals have been studied in earlier works by
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O’Shaugnessy and Procaccia [23], Giona and Roman [24], and Met-
zler et al. [25].

In this paper, we present new results for the solutions, in the
noninteger dimension scenario, of the time-independent Schrödinger
equation with the following form:

− h̄2

2M
∇̃2ψ(r, θ) + U (r)ψ(r, θ) = Eψ(r, θ), (2)

where U (r) is the potential energy function, h = 2π h̄ is the
Planck’s constant, M is the mass of oscillator, and E is the energy.
Harmonic, as well as anharmonic potentials of the form proposed
by Kratzer, and ring shape potentials are considered. The free case
is recovered for U (r) = 0. The wave functions are obtained analyt-

ically, and the eigenvalues are analyzed. The mean values rβ sinδ θ

for the harmonic oscillator in noninteger dimensions are derived.
In addition, scattering states for the Schrödinger equation in non-
integer dimensions in case of Kratzer potential energy function
are obtained, and asymptotic behavior of the solution is analyzed.
We give graphical presentation of the probability density function
(PDF) and we compare with those in case of α = 2 and α = 3.
We note that one may consider time-dependent equation with a
power-law form for the diffusion coefficient. Such approach poses
some interesting issues. For example, diffusion on fractals is er-
godic in the sense that long time and ensemble averages are equiv-
alent [26,27], and, in contrast, diffusion with space-dependent dif-
fusion coefficients is weakly non-ergodic [28].

2. Schrödinger equation with noninteger dimensions

We start our analysis by substituting the spatial operator (1) in
Eq. (2), which yields
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This equation can be solved by using the method of separation
of variables, by representing function ψ(r, θ) in a form ψ(r, θ) =
R(r)Θ(θ). Applying this procedure, one obtains
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where m2
α > 0 is a separation constant connected to the eigenvalue

of the eigenfunction Θ(θ). From Eq. (4) follows that
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+ m2

αΘ(θ) = 0. (6)

The solution of Eq. (5) depends on the potential energy function.
Eq. (6) for the variable θ is the same, it does not depend on
the potential energy function U (r). Different situations, as we will
see later, appear in case of θ -dependent potential energy function
U (r, θ) which will be worked out in the next sections. In order to
solve Eq. (6), we introduce a new variable x = cos θ to simplify the
calculations. Thus, it becomes

d2Θ(x)

dx2
+ (α − 1)x

x2 − 1

dΘ(x)
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− m2

α

x2 − 1
Θ(x) = 0. (7)

The solutions of this differential equation can be represented in
terms of the Gegenbauer polynomials Cν

n (x) (Appendix A), i.e.

Θ(cos θ) = C
α
2 −1

n (cos θ), (8)

where m2
α = n(n + α − 2), i.e., n = −( α

2 − 1) +
√

( α
2 − 1)2 + m2

α .

For planar oscillator α = 2 (mα = ml – magnetic quantum num-
ber) we obtain n = |ml| and Θ(θ) → Φ(ϕ) = eımlϕ , where ϕ is
the azimuthal coordinate. For spherical oscillator α = 3 (m2

α =
l(l + 1), l-orbital quantum number) we obtain n = l and Θ(θ) =
C

1
2

l (cos θ) = Pl(cos θ), where Pl(x) are the Legendre polynomi-
als [29].

Remark 1. This result can be obtained by introducing the sub-
stitution z = 1−x

2 . Thus, Eq. (7) yields a hypergeometric equation
(Appendix C)
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which solution, by using relation (49), is given by
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where n = −( α
2 − 1) +

√
( α

2 − 1)2 + m2
α , i.e. m2

α = n(n + α − 2).

Now, we address our discussion, in the next sections, for the so-
lution of the radial equation when different forms of the potential
energy function U (r) are considered. The situation characterized
by U (r, θ) will be also considered.

2.1. Harmonic oscillator

Let us first consider the solution of (5) for the harmonic oscilla-
tor potential energy function, i.e., U (r) = Mω2r2/2, where ω is the
classical frequency of the oscillator. Such potential energy function
is used in the analysis of spreading of the wave packet of a time
fractional Schrödinger equation in noninteger dimensions [6]. By
substituting in Eq. (5), one obtains
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where A = 2M E/h̄2 and B = M2ω2/h̄2. Representing the radial
function as R(r) = rσ F (r), where σ = −( α

2 − 1) we obtain differ-
ential equation of form
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The solution for this equation is [30]
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where n = −( α
2 − 1) +

√
( α

2 − 1)2 + m2
α , nr is the radial quan-

tum number having the values nr = 0,1,2, . . . , r2
0 = 1/

√
B =

h̄/(Mω), N is the normalization constant, and L(m)
n (x) are Laguerre
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