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We analyze the problem of coherent population transfer to the indirect exciton state in an asymmetric
double semiconductor quantum dot molecule that interacts with an external electromagnetic field.
Using the controlled rotation method, we obtain analytical solutions of the time-dependent Schrödinger
equation and determine closed-form conditions for the parameters of the applied field and the quantum
system that lead to complete population transfer to the indirect exciton state, in the absence of decay
effects. Then, by numerical solution of the relevant density matrix equations we study the influence of
decay mechanisms to the efficiency of population transfer.
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1. Introduction

The coherent control of the population dynamics of an asym-
metric double semiconductor quantum dot molecule that interacts
with a strong electromagnetic field has attracted some attention
in recent years [1–4]. The semiconductor nanostructure (see Fig. 1)
consists of two quantum dots with different band structures cou-
pled by tunneling. At nanoscale interdot separation the hole states
are localized in the quantum dots and the electron states are rather
delocalized. With the application of an electromagnetic field an
electron is excited from the valence band to the conduction band
of one of the quantum dots. This electron can be transferred by
tunneling to the other quantum dot. The tunneling barrier can be
controlled by placing a gate electrode between the two quantum
dots.

Particular interest [1–3] has been given to the potential of com-
plete or highly-efficient population transfer to the indirect exciton
state, state |2〉, with an electron and a hole in different quantum
dots, see Fig. 2. In addition, other novel coherent nonlinear optical
phenomena have been studied in the asymmetric double quan-
tum dot molecule, such as tunneling induced transparency and
slow light [5,6], transient gain without inversion [7], as well as
optical pulse storage and retrieval [8,9]. Moreover, the coupling of
the asymmetric double quantum dot molecule with optical cavities
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[10–14] and plasmonic circuits [15] has led to several useful re-
sults in optoelectronics and quantum information processing, such
as π phase shift of an electromagnetic field [10], electro-optical
switching [11], cavity linewidth narrowing [12], controllable opti-
cal bistability [14], as well as entanglement generation and quan-
tum information transfer [13,15].

Here, we also address the problem of coherent population
transfer to the indirect exciton state in an externally controlled
asymmetric double semiconductor quantum dot molecule. We use
the controlled rotation method [16], which has found several appli-
cations in the optical control of dynamics in semiconductor quan-
tum dots [17–21], in order to obtain analytical solutions of the
time-dependent Schrödinger equation for the asymmetric quantum
dot molecule, in the absence of decay effects. We then use these
solutions to determine closed-form conditions for the parameters
of the applied field and the quantum system that can lead to com-
plete population transfer to the indirect exciton state. Furthermore,
by numerical solution of the relevant density matrix equations we
study the influence of decay mechanisms to the efficiency of pop-
ulation transfer.

The article is organized as follows. In the next section we ob-
tain analytical solutions of the time-dependent Schrödinger equa-
tion and present specific conditions that lead to complete pop-
ulation transfer to the indirect exciton state. Then, in Section 3
we present results for the time evolution of the population in the
quantum states of the asymmetric quantum dot molecule from the
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Fig. 1. (Color online.) Upper figure: Schematic of the setup. An electromagnetic field
drives strongly the left quantum dot. V is a bias voltage. Lower figure: Schematic
of the band structure. Lower left: without a gate voltage, electron tunneling is
weak. Lower right: with applied gate voltage, conduction band levels get into res-
onance, increasing their coupling, while valence-band levels become even more
off-resonance, resulting in effective decoupling of those levels.

Fig. 2. (Color online.) Schematic level configuration of the double quantum dot sys-
tem.

numerical solution of the density matrix equations, with or with-
out decay effects. Finally, in Section 4 we conclude our findings.

2. Theory

The quantum dot structure under study is shown in Fig. 1. We
consider an asymmetric double quantum dot structure that con-
sists of two quantum dots with different band structures coupled
by tunneling. The tunneling barrier can be controlled by placing
a gate electrode between the two quantum dots [1]. In the ab-
sence of the gate voltage the conduction-band electron energy lev-
els are out of resonance and the electron tunneling between two
quantum dots is very weak. In the presence of a gate voltage the
conduction-band electron levels come close to resonance and the
electron tunneling between the two quantum dots is significantly
enhanced [1]. In addition, in the latter case the valence-band en-
ergy levels become more off-resonant and thus the hole tunneling
can be neglected.

The interaction of the quantum dot structure with an applied
electromagnetic field can be described by three states, as it is
shown in Fig. 2: the ground state |0〉, where the system has no
excitations, the (direct) exciton state |1〉, where a pair of an elec-
tron and a hole are bound in the first quantum dot, and finally the
indirect exciton state |2〉, where the hole is in the first quantum
dot and the electron is in the second quantum dot.

The quantum dot structure interacts with a linearly polarized
continuous wave laser field, with electric field E(t) = E0 cos(ωt),
where E0 is the electric field amplitude and ω the angular fre-
quency of the electric field. The laser field couples state |0〉 with
state |1〉. The Hamiltonian that describes the interaction of the
electromagnetic field with the quantum system, in the dipole and
rotating wave approximations, is given by

H = h̄(ω1 − ω0 − ω)|1〉〈1| + h̄(ω2 − ω0 − ω)|2〉〈2|
+

(
h̄Ω

2
|0〉〈1| + h̄Te|1〉〈2| + H.c.

)
. (1)

Here, h̄ωn , with n = 0 − 2, is the energy of state |n〉, Ω is the
Rabi frequency defined as Ω = −μE0/h̄, and Te is the electron
tunneling coupling coefficient. Also, μ is the electric dipole matrix
element of the transition |0〉 ↔ |1〉.

We choose the angular frequency of the applied electromag-
netic field to be ω = ω2 − ω0. Then, Eq. (1) reduces to

H = h̄ω12|1〉〈1| +
(

h̄Ω

2
|0〉〈1| + h̄Te|1〉〈2| + H.c.

)
, (2)

where ω12 = ω1 − ω2. In order to study only the coherent evo-
lution of the system we will initially omit any decay effects and
use the time-dependent Schrödinger equation for the analysis of
the dynamics of the quantum system. The influence of decay ef-
fects will be considered later in the paper. We choose the time-
dependent wavevector as |ψ(t)〉 = ∑2

n=0 bn(t)|n〉 and obtain from
the time-dependent Schrödinger equation:

i
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⎛
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b1(t)

b2(t)

⎞
⎠ , (3)

where ˙ denotes time derivative.
We will present a scheme for the solution of Eq. (3) [16]. For

simplicity we assume that Ω and Te are real and positive. We de-
fine

Ω = λ cosφ, Te = λ

2
sin φ, (4)

and

A(t) = cosφb0(t) + sinφb2(t), (5)

B(t) = −sinφb0(t) + cosφb2(t). (6)

The new set of probability amplitudes obey the differential equa-
tions

i Ȧ(t) = λ

2
b1(t), (7)

iḃ1(t) = λ

2
A(t) + ω12b1(t), (8)

Ḃ(t) = 0. (9)

Eqs. (7) and (8) describe the coherent interaction of a two-level
system with an external electromagnetic field in the rotating wave
approximation. For the initial condition, at t = 0, we take the quan-
tum dot system to be in the ground state |0〉, i.e. b0(0) = 1 and
b1(0) = b2(0) = 0.

In the case that b1(0) = 0 the analytical solution of these equa-
tions can be written as

A(t) = α(t)A(0), B(t) = B(0), b1(t) = β(t)A(0), (10)

where α(t) and β(t) obey the equation |α|2 + |β|2 = 1 and will be
defined below. As A(0) = cosφ and B(0) = −sin φ, we obtain the
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