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We investigate two-dimensional (2D) electron localization via phase-controlled absorption and gain of a
weak probe field in an asymmetric semiconductor three-coupled quantum well (TCQW) with a closed
loop under the action of two orthogonal standing-wave fields. It is found that we can achieve high-
precision and high-resolution 2D electron localization via properly varying the parameters of the system.
The influences of direct one-photon transition and indirect three-photon transition on the precision
of probe absorption–gain spectra are also discussed in details. Thus, the proposed scheme shows the
underlying probability for the formation of the 2D electron localization in a solid.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, high-precision spatial position mea-
surement of a moving atom passing through the standing-wave
field has attracted much attention and has been extensively re-
searched because of its potential wide applications in laser cooling
and trapping neutral atoms [1], Bose–Einstein condensation [2],
atom lithography [3], measurement of the center-of-mass wave
function of moving atom [4], and coherent patterning of mat-
ter waves [5]. Based on atomic coherence, many schemes [6–22]
have been proposed for one- and two-dimensional (2D) atom lo-
calization. Studies show that atom localization can been controlled
via the measurement of the atomic population, double-dark reso-
nances, the probe absorption or gain spectrum, spontaneous emis-
sion and so on.

Among these schemes, some researchers used the collective
phase of applied fields to investigate the behavior of atom localiza-
tion due to the phase sensitive property of an atomic system with
a closed-loop structure. By tuning the collective phase, the peri-
odicity of the position probability distribution can be greatly re-
duced to sub-half-wavelength domain. For 1D atom localization,
Sahrai et al. proposed a scheme for subwavelength atom localiza-
tion via amplitude and phase control of the absorption spectrum.
And two localization peaks in either of the two half-wavelength
regions along the cavity axis were observed by appropriate choice
of the system parameters [15]. Then they showed the position of
the atom is restricted to one-half of each wavelength in a V-type
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three-level atom by only adjusting the phase difference between
applied fields [16]. For 2D atom localization, Ding and his cowork-
ers achieved 100% probability of finding the atom at an expected
position by using phase dependent absorption [20] and sponta-
neous emission [25], when two orthogonal standing-wave fields
coupled the same atomic transition. Recently, a scheme for two-
dimensional atom localization based on the phase control of ab-
sorption and gain of a weak probe field in a four-level double-Λ
system was proposed by Wan et al. [21], they found that the prob-
ability of finding the atom at a particular position can be 100%
when a photon with certain frequency was absorbed or amplified.

In recent years, great attentions have been paid to semicon-
ductor quantum wells (QWs), which can be viewed as the 2D
electron gas, due to their inherent advantages such as high non-
linear optical coefficient and large electric dipole moments of in-
tersubband transitions. Furthermore, the transition energies, dipole
moment and symmetries can be flexibly engineered as desired by
choosing the materials and structure dimensions in device design.
The implementation of quantum coherence and interference ef-
fects in QWs is much more practical than its atomic counterpart
in quantum information and quantum networking. Several quan-
tum coherence and interference effects have been studied in recent
year, such as gain without inversion [26,27], electromagnetically
induced transparency [28,29], optical bistability [30–32], optical
soliton [33,34], Kerr nonlinearity [35], slow light [36], and other
phenomena [37–40]. Lately, Wang et al. [41–43] investigated the
2D probe absorption spectrum in semiconductor quantum wells
driven by two orthogonal standing-wave lasers, which showed the
underlying probability for the formation of the 2D localization ef-
fect in solids.
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Fig. 1. (a) Schematic energy-band diagram of a single period of the asymmetric AlInAs/GaInAs TCQW structure. The layer thicknesses in the QW regions are 42 Å (GaInAs well),
16 Å (AlInAs barrier), 20 Å (GaInAs well), 16 Å (AlInAs barrier), and 18 Å (GaInAs well). (b) The energy arrangement we study. Each field drives only one transition.

In this Letter, we investigate the two-dimensional (2D) elec-
tron localization in an asymmetric semiconductor three-coupled
quantum well with a closed loop under the action of two or-
thogonal standing-wave fields. Due to the phase sensitive prop-
erty of the closed-loop structure, the high-precision and high-
resolution 2D electron localization can be achieved. Our work is
mainly based on the [19–25,41–43], however, which is drastically
different from those works. The major differences are obtained as
follows. First, we are interested in showing the 2D electron local-
ization in an asymmetric semiconductor three-coupled quantum
well. Second, due to the spatial-dependent quantum interference
effect, the probe gain–absorption spectrum can be controlled at a
particular position and the 2D localization effect is indeed achieved
efficiently. Third, the scheme proposed in this paper shows the
underlying probability for the formation of the 2D electron local-
ization in a solid, which may provide some important applications
for electron propagation and dissociation in semiconductors.

The outline of this paper is organized as follows. In Section 2,
the theoretical model under consideration is introduced and the
expression of position-dependent absorption and gain is given by
deriving the equations of motion for the probability amplitude in
the TCQW system. In Section 3, we give a detailed analysis and
explanation for 2D probe absorption–gain spectra in the form of
graphs. Finally, the main conclusions are summarized in Section 4.

2. Model and basic equations

We consider an asymmetric TCQW structure consisting of a
wide well and two narrow wells as shown in Fig. 1, where all
possible transitions are dipole allowed. A weak probe field with
Rabi frequency Ωp (amplitude E p and central frequency ωp , which
is called as probe and denoted by ‘p’) is applied to the inter-
subband transition |1〉 → |2〉 of frequency ω21. The transition
|2〉 → |3〉 of frequency ω32 is coupled by a strong traveling-
wave driven field with Rabi frequency Ωc (amplitude Ec and
central frequency ωc , which is called as couple and denoted
as ‘c’). The transition |3〉 → |4〉 of frequency ω43 is driven simul-
taneously by the composition of two orthogonal standing-wave
fields with position-dependent Rabi frequency Gd(x, y) (amplitude
Ed[sin(kx) + sin(ky)] and central frequency ωd , which is called as
driving and denoted ‘d’ ). To establish a closed-loop configuration,
we apply a weak signal field with Rabi frequency Ωs (amplitude
Es and central frequency ωs , which is called as signal and de-
noted by ‘s’). Under the rotating-wave approximation (RWA) and
the electro-dipole approximation (EDA), via choosing the proper
free Hamiltonian, in the Schrödinger picture, the free and the in-
teraction Hamiltonian in our system can be written as [38] (with
the assumption of h̄ = 1)

H0 = ωp|2〉〈2| + (ωp + ωc)|3〉〈3| + (ωp + ωc + ωd)|4〉〈4| (1a)

H S
int = −Ωpe−i(ωpt−ϕp)|2〉〈1| − Ωce−i(ωct−ϕc)|3〉〈2|

− Gd(x, y)e−i(ωdt−ϕd)|4〉〈3| − Ωse−i(ωst−ϕs)|4〉〈1|
+ h.c. (1b)

Here, h.c. means Hermitian conjugation. The parameters ϕp , ϕc ,
ϕd and ϕs are the initial phases of applied fields. In the interac-
tion picture, when the carrier frequencies fulfill the relationship
ωp + ωc + ωd = ωs , the resulting interaction Hamiltonian can be
rewritten as

H I
int = Δp|2〉〈2| + (Δp + Δc)|3〉〈3| + (Δp + Δc + Δd)|4〉〈4|

− (
Ωpeiϕp |2〉〈1| + Ωceiϕc |3〉〈2| + Gd(x, y)eiϕd |4〉〈3|

+ Ωseiϕs |4〉〈1| + h.c.
)

(2)

where Δp = ω21 − ωp , Δc = ω32 − ωc , Δd = ω43 − ωd and Δs =
ω41 − ωs stand for the detuning of applied laser fields from
the corresponding transition. Ωp , Ωc , Gd(x, y) and Ωs denote
one-half Rabi frequencies for the relevant driven transition, i.e.,
Ωp = μ21 E p/2h̄, Ωc = μ32 Ec/2h̄, Gd(x, y) = Ωd[sin(kx) + sin(ky)]
(k = 2π/λd is the wave vector of the standing-wave field) with
Ωd = μ43 Ed/2h̄, and Ωs = μ41 Es/2h̄. Here, μi j denotes the rel-
evant intersubband dipole moment for the transition between
|i〉 and | j〉. The relationship ωp + ωc + ωd = ωs is reduced to
Δp + Δc + Δd = Δs in such a closed system.

The electronic energy state of the system is defined as

∣∣ψ(t)
〉 = b1(t)|1〉 + b2(t)eiϕp |2〉 + b3(t)ei(ϕp+ϕc)|3〉

+ b4(t)ei(ϕp+ϕc+ϕd)|4〉 (3)

where b j ( j = 1–4) is the probability amplitude of level | j〉. By uti-
lizing the Schrödinger equation, we can obtain the equations of
motion of the probability amplitudes

∂b1

∂t
= iΩpb2 + iΩsb4, (4a)

∂b2

∂t
= i(−Δp + iγ2)b2 + iΩpb1 + iΩcb3, (4b)

∂b3

∂t
= i

[−(Δp + Δc) + iγ3
]
b3 + iΩcb2 + iGd(x, y)b4e−iϕ, (4c)

∂b4

∂t
= i

[−(Δp + Δc + Δd) + iγ4
]
b4 + iΩsb1

+ iGd(x, y)b3eiϕ, (4d)
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