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From the condition of hydrostatic equilibrium and energy conservation a general expression is derived
for the power of air circulation induced by water vapor condensation in the presence of a horizontal
gradient of temperature. It is shown that the obtained expression for circulation power agrees with the
continuity equation. The impact of droplets that form upon condensation on the circulation power is
evaluated. Theoretical estimates are compared with observational evidence.
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1. Introduction

Phase transitions of water vapor in the air bring about pres-
sure changes and lead to the appearance of pressure gradients that
drive air circulation. Condensation of saturated water vapor oc-
curs when the moist air ascends and, consequently, cools, as well
as when moist air flows horizontally towards areas of lower tem-
perature. The condition of hydrostatic equilibrium does not allow
large vertical velocities to develop, such that all the condensational
power released in the ascending air is translated to the power of
horizontal winds [1–3].

Dissipation of the horizontal air flow due to friction on the
Earth’s surface leads to the formation of vortices. Turbulent dif-
fusion enhances evaporation and mixing of water vapor in the air.
Therefore, if the air moves towards an area where temperature and
humidity are high enough to ensure sufficient evaporation, an in-
crease in the partial pressure of water vapor by evaporation can
significantly impede or even fully arrest the condensational air cir-
culation.

In this work, we formulate a general equation for the power
of condensational circulation of air in the case of arbitrary tem-
perature gradients. We show that this equation is consistent with
the continuity equation for air in the presence of the phase tran-
sitions of water vapor. It is also shown that, on average, formation
of condensate particles reduces the power of condensational circu-
lation by a small relative magnitude. A qualitative explanation of
the observed peculiarities for global circulation of the atmosphere
of Earth is given.

2. Dynamic equation of condensational air circulation

In the ascending air all its gaseous components, including water
vapor, share the same vertical velocity w. In hydrostatic equilib-
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rium, the increase of potential energy of the ascending air in unit
volume is equal to the decrease of air pressure p, (−∂ p/∂z = ρg),
where ρ is air density, g is the acceleration of gravity, w and z-axis
are directed opposite to g. This means that work is not produced
on the ascending air, and the kinetic energy of air does not change.
In the absence of condensation of water vapor, the relative partial
pressures pi/p of all air gases remain constant and independent of
z, because the ascending gases share the same vertical velocity. It
follows that partial pressures of the air gases, which all have dif-
ferent molar masses Mi , are equally distributed over height. Their
distribution coincides with that of the air as a whole:
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where M = ∑
i Mi pi/p is molar mass of air, R is the universal gas

constant, h is the scale height of the vertical distribution of all air
gases (height of a uniformly dense air column). The last equality in
(1) is equation of state for the ideal gas. The fulfillment of Eq. (1)
for the ascending moist air with pressure p is referred to below as
the condition of hydrostatic equilibrium.

In a stationary flow, when moist air ascends and cools, the
water vapor condenses and leaves the gaseous phase above the
horizontal surface (cloud base) where the water vapor is saturated.
The vertical distribution of water vapor shrinks towards the Earth’s
surface and does not conform to Eq. (1):
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where hc is determined by the Clausius–Clapeyron equation, Lv is
the energy of vaporization (latent heat released during condensa-
tion) [1,3], ξ � 1 is dimensionless.

The fact that the vertical distributions (2) and (1) for the water
vapor are different implies that when the ascent is accompanied by
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condensation, work is performed on the air that should generate
kinetic energy with the following power [1–3]:

s = wpv
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Eq. (3) can be re-written in another convenient form:
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γ ≡ h−1
c − h−1. (4)

The power generated by water vapor with partial pressure pv

is of the order of γ � 1 as compared to the power generated by
air as a whole with the total pressure p, for example, when the air
is filling vacuum. By integrating power s (3) over time (wdt = dz),
we find that total work corresponding to complete condensation
of water vapor in the ascending air is of the order of pv = γ p
where pv and p are values at the Earth’s surface (z = 0). This
work is equal to the kinetic energy ρv2/2 ∼ γ p that would be ac-
quired in the absence of friction by the air volume upon complete
condensation of water vapor it contains (v = u + w, where u is
the horizontal velocity component). For γ = 3 × 10−2, p = 105 Pa
and ρ = 1.3 kg m−3 this corresponds to velocity v = (2γ p/ρ)1/2 ≈
70 m s−1. Depending on the geometry of the circulation this ki-
netic energy produced by condensation corresponds to either ver-
tical or horizontal motion or both.

In large condensation areas with horizontal size L significantly
exceeding condensation height, the latter being of the order of
the atmospheric scale height h, the observed annual mean verti-
cal velocities of the ascending air are of the order of 1 mm s−1 [4].
This indicates that any significant vertical acceleration of the air is
absent and that condition (1) of the hydrostatic equilibrium is pre-
served for the air as a whole with total pressure p. In this case,
energy conservation and the condition of hydrostatic equilibrium
dictate that power s (3) corresponds to the power of the horizon-
tal air flow −u∇p, where u is the vector of horizontal velocity [2].
Flow stationarity for circulating air corresponds to the equality be-
tween the characteristic times of the horizontal and vertical air
motions (see Sections 3 and 4 below). Thus, the equality between
the power released during the vertical motion of the ascending air
(3) and the power of the horizontal air motion is equivalent to the
equality of the corresponding amounts of work (energy conserva-
tion) and takes the form of the following dynamic relationship:

s = −w(∇pv − γ ∇p) ≡ −pw∇γ = −u∇p. (5)

Equality (5) holds true, if the horizontal air motion is not ac-
companied by phase transitions of water vapor for constant z, i.e.
when u∇pv = 0 and u∇T = 0 and the condition of a horizontal
isothermality is fulfilled [2,3]. In this case, the surfaces of constant
relative humidity (in particular, the cloud base surface where rel-
ative humidity is unity) remain horizontal in the entire circulation
area.

It is however not difficult to generalize (5) to the case of a
non-zero horizontal temperature gradient. In this case, to the left-
hand side of the equality (5) one should add the power related
to the change of water vapor partial pressure caused by evapo-
ration or condensation in the horizontal air flow. This power is
equal to −u∇pv . The general form of the dynamic equation for
the power of condensational circulation (it was obtained from dif-
ferent physical considerations in [6]) is then given by the following
relationship:

s = −pw∇γ − u∇pv = −u∇p. (6)

A horizontal gradient of temperature can enhance condensation, if
−u∇pv > 0, or weaken it by evaporation, if −u∇pv < 0 [6].

In coordinate axes x and z, where x is directed along u, the
horizontal pressure gradient in (6) has the form (see (1), (2) and
(4) in [6]):
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All variables in (7) can be retrieved from observations. As shown
in [5] with the empirically measured values entered into the right-
hand side of (7), this equation yields an estimate of the mean
horizontal pressure gradient in the Amazon river basin that agrees
well with observations.

3. Continuity equation in the presence of phase transitions of
water vapor

In the stationary case, the continuity equations for the water
vapor and the dry air constituents have the form

∇vNv ≡ Nv∇v + v∇Nv = −S, v = u + w, (8)

∇vNd ≡ Nd∇v + v∇Nd = 0, N = Nd + Nv , (9)

where Nv , Nd and N are the molar densities of water vapor, dry
air constituents and moist air as a whole, respectively. Air velocity
v is equal to the sum of the horizontal u and vertical w veloc-
ity components. The quantity S (mol m−3 s−1) represents volume
density of the rate at which molar density Nv of water vapor is
changed by phase transitions. By multiplying (9) by γd ≡ Nv/Nd
and excluding Nv∇v from (8), we obtain

v(∇Nv − γd∇Nd) = −S. (10)

Using the ideal gas equation of state (see Eq. (1)):

p = N RT , pv = Nv RT , pd = Nd RT , γd = pv

pd
, (11)

it is possible to replace molar densities Ni in (10) with partial
pressures pi (i = v,d) and the rate of phase transitions S with
the power of phase transitions s:

v(∇pv − γd∇pd) = −s, s = S RT . (12)

Note that owing to the universality of the gas constant R the tem-
perature gradient ∇T cancels during this procedure and does not
appear in the final equation (12). The kinematic continuity rela-
tionship (12) should be fulfilled for any s. The magnitude of power
s of water vapor phase transitions is not determined by the con-
tinuity equation (12). It must be specified independently by using
dynamic physical principles [7].

Such a dynamic physical principle is the equality between the
power of phase transition s and the power of horizontal circula-
tion:

s = −u∇p. (13)

Substituting (13) into (12) and taking into account the easily veri-
fiable identity

∇pv − γd∇pd ≡ (1 + γd)(∇pv − γ ∇p), γ ≡ γd

1 + γd
, (14)

we obtain the following relationship for (12):

(w + u)(∇pv − γ ∇p) = 1

1 + γd
u∇p.

By transferring γ u∇p to the right-hand side of the last relation-
ship and taking into account relationship (14) between γ and γd ,
we obtain:
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