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The motion of a composite system made of N particles is examined in a space with a canonical
noncommutative algebra of coordinates. It is found that the coordinates of the center-of-mass position
satisfy noncommutative algebra with effective parameter. Therefore, the upper bound of the parameter
of noncommutativity is re-examined. We conclude that the weak equivalence principle is violated in the
case of a non-uniform gravitational field and propose the condition for the recovery of this principle
in noncommutative space. Furthermore, the same condition is derived from the independence of kinetic
energy on the composition.
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1. Introduction

Recently, noncommutativity has received much attention owing
to the development of String Theory [1,2] and Quantum Grav-
ity [3]. The idea that space might have a noncommutative structure
has a long history. It was proposed by Heisenberg and was formal-
ized by Snyder [4].

The noncommutative space can be realized as a space where
the coordinate operators satisfy the following commutation rela-
tions

[ X̂i, X̂ j] = ih̄θi j, (1)

where θi j is a constant antisymmetric object. In the classical limit
h̄ → 0 the quantum-mechanical commutator is replaced by the
Poisson bracket

{Xi, X j} = θi j . (2)

It is important to note that a charged and massive particle in
a strong magnetic field B pointing in the Z direction moves in a
noncommutative space. The commutation relation for the coordi-
nates of a particle moving in the (X, Y ) plane is given by

[ X̂, Ŷ ] = −ih̄
c

eB
, (3)

here e is the charge of the particle and c is the speed of light [5].
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Many physical problems have been studied in the framework of
noncommutative quantum mechanics and noncommutative classi-
cal mechanics. Some of the first articles on quantum mechanics
with noncommutativity of canonical type are [6–9]. Formal as-
pects of noncommutative quantum mechanics are addressed in
[10,11]. Neutrons in a gravitational field with noncommutativity
are considered in [12]. Interesting effects arise when one considers
noncommutativity in the context of quantum cosmology and black
hole physics [13–15]. The Landau problem [16–20], harmonic os-
cillator [21–24], two-dimensional system in central potential [6],
classical particle in a gravitational potential [25,26], classical sys-
tems with various potentials [27] are studied. Note, however, that
it is important to consider many-particle problem in order to ana-
lyze the properties of a wide class of physical systems in noncom-
mutative space.

The classical problem of many particles in noncommutative
space–time was examined in [28]. The authors considered two
examples of many-particle systems, namely the set of N inter-
acting harmonic oscillators and the system of N particles moving
in the gravitational field. The corresponding Newton equation for
each particle in these systems was provided. In [29] the two-body
system of particles interacting through the harmonic oscillator po-
tential was considered on a noncommutative plane. The authors
implemented the noncommutativity through defining a new set of
commutating coordinates and got the θ -dependent Hamiltonian in
usual commutative plane. The coordinates of the center-of-mass
position and relative motion, the total momentum and the relative
momentum were introduced in the traditional way. Therefore, the
authors rewrote the Hamiltonian as a sum of the freely moving
part and a θ -dependent bounded term and derived the partition
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function of a two-body system of classical noncommutative har-
monic oscillator.

The problems of noncommutative multiparticle quantum me-
chanics are examined in [30]. The authors considered the case
when the particles of opposite charges feel opposite noncommu-
tativity. The coordinates of the center-of-mass and relative mo-
tion were introduced. It was shown that the magnitude of the
center-of-mass coordinates noncommutativity is never large then
the parameter of noncommutativity for elementary particle. In [31]
a system of two quantum particles was considered in the context
of noncommutative quantum mechanics, characterized by noncom-
mutativity between the coordinates and momentum noncommuta-
tivity. The noncommutative correction to the energy spectrum of
two-particle system was found. In [32] the system of two charged
quantum particles was considered in a space with coordinates
noncommutativity. The authors reduced the two-body problem to
a one-body problem for the internal motion. The quantum model
of many particles moving in twisted N-enlarged Newton–Hooke
space–time was proposed in [33]. The Schroedinger equation for
arbitrary stationary potential was provided. As an example the
author examined the system of N particles moving “in” and in-
teracting “by” the Coulomb potential.

In the case of Doubly Special Relativity the problem of com-
posite system (so-called soccer-ball problem) was considered in
[34–36]. This problem was also studied within the framework of
relative locality in [37–39].

Composite system in deformed space with minimal length
[ X̂, P̂ ] = ih̄(1 + β P̂ 2) was considered in [40]. The authors solved
the two-body problem, studied the composite system made of
N elementary particles, defined an effective deformation param-
eter and re-examined the estimation of the minimal length upper
bound. In [41] the properties of the kinetic energy of a composite
body were analyzed. The author considered the problem of viola-
tion of the equivalence principle and proposed the way to recover
this principle in deformed space with minimal length.

The violation of the equivalence principle is an important prob-
lem in noncommutative space. In [42] the authors examined the
free-fall of a quantum particle in a uniform gravitational field. It
was argued that the equivalence principle extends to the realm of
noncommutative quantum mechanics. One of the consequences of
the twisted Poincare symmetry was investigated in [43]. In this
context the author concluded that one can expect that the equiva-
lence principle is not violated in the noncommutative space–time.
However, in [44–46], the authors argued that noncommutativity
leads to an apparent violation of the equivalence principle.

In this Letter the two-particle and N-particle systems are ex-
amined in noncommutative space. We consider the general case
when the different particles satisfy noncommutative algebra with
different parameters of noncommutativity. Every macroscopic body
consist of elementary particles which feel the effect of noncom-
mutativity with different parameters. So, there is a problem of
describing the motion of the center-of-mass of macroscopic body
in noncommutative space. In order to solve this problem the total
momentum is introduced as an integral of motion in noncommuta-
tive space and the center-of-mass position is found as its conjugate
variable. We conclude that the coordinates of the center-of-mass
satisfy noncommutative algebra with effective parameter of non-
commutativity. Taking into account this conclusion the condition
to recover the equivalence principle in noncommutative space is
proposed. Moreover, the same condition is derived from the inde-
pendence of kinetic energy on the composition.

This Letter is organized as follows. In Section 2 the two-body
problem is solved. More general case of composite system made of
N elementary particles in noncommutative space is studied in Sec-
tion 3. The motion of a body in gravitational field and the equiv-
alence principle are considered in Section 4. The properties of the

kinetic energy in noncommutative space are studied in Section 5.
In Section 6 the upper bound of the parameter of noncommutativ-
ity is re-examined.

2. Two-body problem

In ordinary space we can reduce a two-body problem to an
equivalent one-body problem. Let us consider two elementary par-
ticles of masses m1, m2 that interact only with each other in two-
dimensional noncommutative space and define the total momen-
tum and the center-of-mass position of this system. We consider
the case when the different particles of masses m1, m2 satisfy
the noncommutative algebra with parameters θ1, θ2 respectively.
Therefore, the coordinates X (i)

μ and the components of momentum

P (i)
μ satisfy the following relations

{
X (i)

1 , X ( j)
2

} = −{
X (i)

2 , X ( j)
1

} = δi jθi, (4){
X (i)

μ , P ( j)
ν

} = δμνδi j, (5){
P (i)

μ , P ( j)
ν

} = 0, (6)

here μ = (1,2), ν = (1,2) and the indices i, j label the particles.
The interaction potential energy of the two particles V (|X(1) −

X(2)|) depends on the distance between them. Therefore, the
Hamiltonian of the system reads

H = (P(1))2

2m1
+ (P(2))2

2m2
+ V

(|X(1) − X(2)|). (7)

Let us introduce the total momentum in a traditional way

P̃ = P(1) + P(2). (8)

It is easy to find that the total momentum satisfies the following
relation

{P̃, H} = 0. (9)

So, the total momentum (8) is an integral of motion in noncom-
mutative space. Now we can find the coordinates of the center-of-
mass X̃ as conjugate coordinates to the total momentum

X̃ = m1X(1) + m2X(2)

m1 + m2
. (10)

We can also introduce the coordinates and momentum of relative
motion in the traditional way

�P = μ1P(2) − μ2P(1), (11)

�X = X(2) − X(1), (12)

here μ1 = m1/(m1 + m2) and μ2 = m2/(m1 + m2).
It is easy to find that

{ X̃μ, P̃ν} = {
μ1 X (1)

μ + μ2 X (2)
μ , P (1)

ν + P (2)
ν

} = δμν, (13)

{�Xμ,�Pν} = {
X (2)

μ − X (1)
μ ,μ1 P (2)

ν − μ2 P (1)
ν

} = δμν, (14)

{ P̃μ, P̃ν} = {�Pμ,�Pν} = 0. (15)

Let us calculate the Poisson brackets for the coordinates of the
center-of-mass

{ X̃1, X̃2} = −{ X̃2, X̃1}
= 1

(m1 + m2)2

{
m1 X (1)

1 + m2 X (2)
1 ,m1 X (1)

2 + m2 X (2)
2

}

= m2
1θ1 + m2

2θ2

(m1 + m2)2
. (16)
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