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We investigate interplay between external field and interatomic interaction and its applications to
coherent control of quantum tunneling for two repulsive bosons confined in a high-frequency driven
double well. By using a full solution which is generated analytically as a coherent non-Floquet state, three
kinds of the stationary-like states (SLSs) with different degeneracies are illustrated, which corresponding
to the different coherent destructions of tunneling (CDT) at the Floquet level-crossing, avoided-crossing
and uncrossing points. The analytical results are numerically confirmed and perfect agreements are found.
Based on the results, a useful scheme of quantum tunneling switch between the SLSs is presented.
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1. Introduction

Coherent control of quantum tunneling in a periodically driven
double well has been researched extensively from both theoret-
ical and experimental sides [1–3]. Some interesting phenomena,
such as the coherent destruction or coherent construction of tun-
neling (CDT or CCT) [3–9], chaos enhancing tunneling [10,11], and
photon-assisted tunneling [12–14] have been found. The control
method and CDT mechanism have also been applied to different
fields, such as the qubit control [15,16], the frequency-dependent
transistor [17] and the probes of spectrum structures in different
systems [18,19].

Many works focus on different routes to CDT for the single-
or many-particle systems [4–9,20]. Few-particle systems are in an
intermediate case for the numbers of particles, which deserve fur-
ther study for comprehensively understanding tunneling dynamics.
However, investigations on quantum control to two particles in a
periodically driven double well are extremely rare, except for the
cases of two particles in a one-dimensional lattice which can be
reduced to a two-site trap [21–23] or two particles in a driven
double-well train [24–27]. Recently, several interesting phenom-
ena of quantum tunneling were shown for two repulsive bosons
in a non-driven double well, which include the Rabi oscillations
and the correlated pair tunneling [28–30]. The interatomic inter-
action adjusted by the Feshbach-resonance technique [31] plays
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an important role in tunneling dynamics of the non-driven two-
particle system. Here we are interested in the combined effects of
the driving and interaction on tunneling dynamics of the double-
well coupled two bosons.

In this Letter, we study coherent control of quantum tunneling
via the competition and cooperation between atomic interaction
and driving field for a pair of repulsive bosons confined in a pe-
riodically driven double well. In the high-frequency regime, we
obtain a general non-Floquet state as a full solution, which is a co-
herent superposition of the Floquet states. It is demonstrated that
the photon resonance [21] of interaction leads to translation of
the Floquet level-crossing points, and the non-resonant interaction
causes avoided crossing of partial levels. Three different kinds of
CDT, respectively at the level-crossing points for the three degen-
erate states, at the avoided-crossing points for the two degenerate
states and at the uncrossing points for the single Floquet states,
are illustrated, which result in different kinds of the stationary-like
states (SLSs) with invariant populations. The analytical results are
confirmed by direct numerical simulations and good agreements
are shown. As an application of the above results, an interesting
scheme of quantum tunneling switch between SLSs is presented
by using CDT and CCT to close and open the quantum tunneling,
which could be useful for the quantum control of two bosons in a
driven double well.

2. Analytical solutions in high-frequency regime

We consider two bosons confined in a periodically driven dou-
ble well with the governing Hamiltonian [32,33]
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where bi(b
†
i ) is the annihilation (creation) operator for ith well.

The parameters γ and U are the tunneling coefficient and the
interaction strength, respectively. The function ε(t) = ε0 cos(ωt)
describes the external ac field in which ω and ε0 are the driv-
ing frequency and amplitude, respectively. For simplicity, we have
put h̄ = 1 and taken the reference frequency ω0 = 102s−1 [32] so
that ε0, γ , ω and U are in units of ω0, and time t is normalized
in units of ω−1

0 .
Quantum state |ψ(t)〉 of system (1) can be expanded in Fock

bases as [21]

∣∣ψ(t)
〉 = a0(t)|0,2〉 + a1(t)|1,1〉 + a2(t)|2,0〉, (2)

where the state vectors | j〉 = | j,2 − j〉( j = 0,1,2) denote that
j bosons reside in left well, 2 − j bosons reside in right well;
a j(t) represents probability amplitude of the system in j-th Fock
state | j〉. The corresponding normalization condition reads as
|a0(t)|2 + |a1(t)|2 + |a2(t)|2 = 1. Inserting Eqs. (1) and (2) into the
time-dependent Schrödinger equation i ∂|ψ(t)〉

∂t = H(t)|ψ(t)〉 results
in the coupling equations

iȧ0(t) = [
U − ε(t)

]
a0(t) + √

2γ a1(t),

iȧ1(t) = √
2γ a0(t) + √

2γ a2(t),

iȧ2(t) = [
U + ε(t)

]
a2(t) + √

2γ a1(t). (3)

It is difficult to get exact analytical solutions of Eq. (3) with pe-
riodic driving ε(t) = ε0 cos(ωt). However, we can construct the
approximate analytical solution in the high-frequency limit, ω � 1
and u, γ � ω. To do this, we adopt the idea of reduced inter-
action strength [21] to rewrite the interaction strength as U =
nω + u for 0 � u � ω, n = 0,1,2, . . . with u being the re-
duced interaction strength, and make the function transformation
a0(t) = b0(t)ei

∫ [ε(t)−nω] dt , a1(t) = b1(t), a2(t) = b2(t)e−i
∫ [ε(t)+nω] dt

with b j(t)( j = 0,1,2) being the slowly-varying functions of time.
Thus Eq. (3) becomes new equations in terms of b j(t). Under
the high-frequency approximation, the rapidly oscillating functions
ei

∫ [±ε(t)−nω] dt = ∑
n′ Jn′(± ε0

ω )ei(n′−n)ωt in the equations of b j(t)
can be replaced by their time averages [34] Jn(± ε0

ω ) which are
the n-order Bessel functions such that the final equations become

iḃ0(t) = ub0(t) + Jn

(
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)
b1(t),
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(
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)
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(
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ω

)
b2(t),

iḃ2(t) = ub2(t) + (−1)n Jn

(
ε0

ω

)
b1(t). (4)

In the calculations, we have employed the formula Jn(− ε0
ω ) =

(−1)nJn(
ε0
ω ) for positive integer n, and the renormalized coupling

coefficient Jn(
ε0
ω ) = √

2γJn(
ε0
ω ). Starting from Eq. (4), we obtain

the interesting analytical solutions as follows.

2.1. Quasienergies and Floquet states

Because the time-dependent Hamiltonian (1) has the period
T = 2π

ω , we can make use of Floquet theory [35] to get its so-
lution in the form |ψ(t)〉 = e−iEt |ϕ(t)〉, where |ϕ(t)〉 is the Flo-
quet state with the same period 2π

ω , E is termed the Floquet
quasienergy which has been normalized in units of h̄ω0. Noting

the same period of the transformation function ei
∫ [±ε(t)−nω] dt be-

tween a j(t) and b j(t), to generate the Floquet states, we seek
the stationary solutions of Eq. (4) b0 = Ae−iEt , b1 = Be−iEt , b2 =
Ce−iEt with constants A, B , C obeying the normalization condition
|A|2 + |B|2 + |C |2 = 1. Inserting these into Eq. (4), we establish the
equations of the stationary solutions. By solving these equations,
we obtain three Floquet quasienergies El and three sets of con-
stants Al , Bl , Cl as

E0 = u, A0 = 1√
2
, B0 = 0, C0 = (−1)n+1 1√

2
;

E1 = 1

2
(u − kn), A1 = 2 Jn√

8 J 2
n + (u + kn)2

, (5)

B1 = −(u + kn)√
8 J 2

n + (u + kn)2
, C1 = (−1)n2 Jn√

8 J 2
n + (u + kn)2

;

E2 = 1

2
(u + kn), A2 = 2 Jn√

8 J 2
n + (kn − u)2

, (6)

B2 = kn − u√
8 J 2

n + (kn − u)2
, C2 = (−1)n2 Jn√

8 J 2
n + (kn − u)2

. (7)

Here, the simplified parameter kn =
√

8 J 2
n(

ε0
ω ) + u2 has been

adopted. Given b j(t), the rapidly oscillating function a j(t) are ob-
tained immediately. Substituting such a j(t) into Eq. (2), Floquet
states |ψl(t)〉 are expressed as

∣∣ψl(t)
〉 = e−iElt

∣∣ϕl(t)
〉 = e−iElt

[
Ale

iε0
ω sin(ωt)−inωt |0,2〉

+ Bl|1,1〉 + Cle
−iε0
ω sin(ωt)−inωt |2,0〉] (8)

for l = 0,1,2. Here n is a positive integer adjusted by the inter-
action strength. If the system is prepared in the Floquet states
initially, probabilities of the system in different Fock states are the
constants |Al|2, |Bl|2 and |Cl|2, respectively, so that tunneling of
atoms between two wells is suppressed completely, i.e., a kind of
CDT occurs.

2.2. Coherent non-Floquet states

Given the Floquet solutions of Eqs. (5)–(8) as a set of complete
bases in a three-dimensional Hilbert space [29,36], the principle
of superposition of quantum mechanics indicates that the linear
Schrödinger equation has the periodic or quasiperiodic non-Floquet
solutions, which is a coherent superposition of the Floquet states.
Noticing the relation between a j(t) and b j(t), the general non-
Floquet state has the form

∣∣ψ(t)
〉 =

2∑
l=0

cl
∣∣ψl(t)

〉 = a′
0(t)|0,2〉 + a′

1(t)|1,1〉 + a′
2(t)|2,0〉

= b′
0(t)e

iε0
ω sin(ωt)−inωt |0,2〉 + b′

1(t)|1,1〉
+ b′

2(t)e− iε0
ω sin(ωt)−inωt |2,0〉, (9)

where cl are the superposition coefficients determined by the ini-
tial conditions and normalization, and b′

j(t) are the slowly varying
functions

b′
0(t) =

2∑
l=0

cl Ale
−iElt, (10)

b′
1(t) =

2∑
l=0

cl Ble
−iElt, (11)
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