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Recently, quantum fidelity [1] has received a growing attention.
This important concept of quantum information theory measures
the similarity between two states. It has an important role in de-
tecting quantum phase transitions (QPT) [2] as there is an abrupt
change in the ground-state wave function at the transition point.
(For a review of fidelity in QPT see [1].) Another important con-
cept is the fidelity susceptibility [3]. It is the leading term of the
fidelity.

For pure states fidelity is defined by the overlap between the
states ¥ and @ as

F(@,9)=[(@|¥)]. (1)

Recently, there is an interest in connecting density functional the-
ory and quantum phase transitions [4,5]. Analogously to Eq. (1),
Gu [6] defined the density functional theory fidelity as the dis-
tance between two densities ¢ and o:

f(Qﬁ)Z/Ql/zU]/ZdQ- (2)

In this Letter continuous density distributions are considered.
o (or o) is the density

o) =|o@] (3)

or in case of a many variable wave function

Q(q)=/|¢>(q,t)lzdr (4)

is a reduced density. ¢ and T can denote several variables. For a
many variable wave function, several reduced densities can be con-
structed. The following considerations are valid for any of them.
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Quantum phase transition occurs when the ground-state en-
ergy and wave function undergo a significant change at a certain
point. The ground-state wavefunction becomes qualitatively differ-
ent across the transition point. Comparing the ground-state wave-
function or the density at two values of the control parameter
(A1 and Ay), “their distance” is large if A1 and A are on differ-
ent sides of the transition point, and small if A; and A, are in the
same phase. Consequently, fidelity shows a minimum at the tran-
sition point. Therefore, fidelity is generally considered at two close
points A and A + 3A. An expansion around A leads to the definition
of fidelity susceptibility xr [6]

F(A,Hcsx)zl—%(M)ZXFJF-.-. (5)

Analogously, the dft fidelity susceptibility x s can be defined as the
leading term of the dft fidelity:

f(x,x+5x)=1—%(5A)2Xf+-.-. (6)

Expanding o(x + ) around o(A) we arrive at

1 [ 1(d0)

That is, the dft fidelity susceptibility is proportional to the Fisher
information

[ 1(d0)°
I‘/E(a?) dr. (8)

The Fisher informational functional [7] is defined as a measure
of the ability to estimate a parameter

_ dnpIn 7’ [ [P )P
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p(x|A) is a probability density function depending on a parame-
ter A. If A is a parameter of locality

pX[A) =px+21)=p(y) (10)

where Y =x+ A is a new variable. Therefore

ap(x|A) _dpx+A)  3p(y) (1)
A Ax+r) Yy

As the expression does not depend on A, we may set the locality
at zero and the Fisher information takes the form:

’ 2
[p'(%)] dx
p(X)

Frequently, Eq. (12) is applied for Fisher information. However, if
Eq. (10) is not valid, Eq. (9) should be applied. Selecting ¢ as a
probability density function, we can immediately see that the den-
sity does not fulfil Eq. (10) and Eq. (8) gives the correct way of
obtaining Fisher information.

Following the derivation of Frieden [8] we can find a link be-
tween fidelity susceptibility and the relative or Kullback-Leibler
entropy [9]. The relative entropy is defined

IL=0)=

(12)

I (f.g) = / flngdr (13)

for distribution functions f and g. This quantity measures the “dis-
tance” of the two distribution functions.
The Fisher information (8) can be rewritten as

2
= [ L (0o’
=0/ o(A) A
. oG +80) 7T
=i (M)Z/Q(M[W_l] - .

Introducing the small quantity v = o(A + 8A)/0(A) — 1 and using
the expansion In (1 + v) = v — v2/2, we arrive at

2 A+ SA
I~ Z/Q(A)lnudr. (15)
(64) o)
Therefore, dft fidelity susceptibility can be rewritten as
2 O(A+8A)
=— M) In ——=dr, 16
X= " 6n? / ¢ o) (o)
or
2
X= (S)L)ZIKL( oW, 0(L+81)). (17)

That is, dft fidelity susceptibility is proportional to the relative or
Kullback-Leibler entropy. From the definition (6) follows the linear
relationship between the relative entropy and dft fidelity

Iit(eM), 0 +80)) =1 — f(h, A+ 82). (18)

In a QPT the wavefunction has an abrupt change in the critical
point and the approximation (15) will be worse in this point. Nev-
ertheless, we can use the Kullback-Leibler entropy instead of the
fidelity as a detector of a quantum phase transition. We define a
new quantity

CA, 80 = fA, A +380)/(1 = Ik(0(n), 0(h + 82))) (19)

measuring the quality of the relation (18). C(A,8A) is approxi-
mately 1 except around a region at the critical point, where it will
move away from 1. To illustrate these properties the single-mode
Dicke model in considered. We mention in passing that entropic
quantities have recently been found good markers of QPT [10-16].

The Dicke model [17-20] describes an ensemble of N two-level
atoms, with level splitting wyp, interacting with an electromagnetic
field with frequency w. The Hamiltonian is given by

H:a)on—i—a)aTa—i—%(aTvLa)(JJFvLJf), (20)

where J,, Ji+ are the angular momentum operators for a pseu-
dospin of length j = N/2, and a and a' are the bosonic operators
of the field, and A is the coupling parameter for the dipolar inter-
action between the field and the atoms. It is known that there
is a quantum phase transition for A = A, = @ in the ther-
modynamic limit (N — oo, with two phases, the normal phase
(A < A¢) and the superradiant phase (A > A.)). The parity operator
[T = ei™@a+J:+)) commutes with H and, in particular, the ground
state must be an even parity one.

We solve the problem numerically (diagonalizing the Hamilto-
nian) and analytically (with a variational approximation). For this
purpose a basis set {|n; j m) = |n) ® |j,m)} of the Hilbert space
is introduced, with {|n)}7°, the number states of the field and

{|],m)}rjn:7j the so-called Dicke states of the atomic sector. Any
vector ¥ can be expanded in terms of the basis as

Z Z cimin: j.m) (21)

n=0m=—j

where the coefficients c(“ are calculated by numerical diagonaliza-

tion and the bosonic Hilbert space is truncated with a given cutoff
ne (which is chosen by minimizing the energy).

With the Holstein-Primakoff approximation (see [21]), the
wavefunction in position representation is

v(x, Y)—We 2(a)x +woy )Z Z C(])
n=0m=—j
Hn(\/—x)Hj+m(\/ wpy)
2(n+m+1)/2 /G +m)’

where we have used the representation of the field and atomic
sectors:

(22)

(x|n) = = Jwe 3¢ TV Hi(V@X) (23)
2T
(ylj,m) = /woe™ Sooy? __Him(y/®oy)

V20 G+ m
Additionally, an analytical variational approximation for the
ground state of the Dicke model, is expressed in terms of the par-
ity symmetry adapted coherent states introduced by Castafios et
al. [22,23]
lo) @ 12) + |—a) ® |-2)
N(w, 2) ’
where |o) ® |z) (with «,z € C) are the standard (canonical or

Glauber) and spin-j Coherent States (CSs) for the photon and the
particle sectors given by [22,23]

o0
2 o
y=e 42y —=In)
n=0 n!
12) = (1+121%) e*+1j, - j)

— 2\—J ! ] 172 j+m ;
=(1+1z1)7 Y (. 2§ my, (25)

m=—j

[Yv) = (24)
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