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In the literatures, to transfer the Boolean control network from the initial state to the desired state, the
expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum
energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor
product of matrices and Floyd’s algorithm, minimum energy, constrained minimum energy and optimal-
satisfactory control design for Boolean control network are given respectively. A numerical example is
presented to illustrate the efficiency of the obtained results.
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1. Introduction

Boolean network was first proposed by Kauffman to describe
genetic regulatory networks. In a Boolean network, the states of
Boolean variables correspond to the activities of genes. The state
of each Boolean variable is described by a binary variable, where
the value 1 (or 0) represents the Boolean variable is on (or off).
Moreover, every Boolean variable updates its value according to
a logical relationship, given in the form of a Boolean function.
As Boolean network is a powerful tool in describing, analyzing
and simulating the cellular network, it has received much atten-
tion. Up to now, many results on the topological structure of a
Boolean network have been presented, see e.g. [1–3]. There is also
a huge amount about Boolean networks in literature, for example,
see [4].

Recently, a new matrix product called semi-tensor product is
emerging, which has a wide range of application in many fields,
for example, see [5–8]. The semi-tensor product of matrices has
been successfully applied to express and analyze Boolean net-
works. A set of useful formulas for calculating fixed points and
cycles of Boolean networks was given by [5]. Many fundamental
and landmark results about Boolean control networks have been
obtained by this method. For example, the controllability and ob-
servability of BCN have been studied by [9], and the synchroniza-
tion has been investigated by [10].
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Optimal control theory is a mathematical optimization method
for deriving control polices, see e.g. [11–13]. The optimal control
of Boolean networks has attracted attention too. For example, by
using a maximum principle, [14] has discussed the Mayer-type
optimal control for single-input Boolean networks, that is fix a
final time N > 0, maximize the cost-functional J (u) = rT x(N; u).
[15] has studied the problem of minimizing the cost functional
J (u) = limM→∞ 1

M

∑M−1
t=0 P (x(t), u(t)) of k-valued logical system

(when k = 2, k-valued logical system degenerates into a Boolean
network), that is the average-cost per-stage infinite-horizon prob-
lem. Time-optimal control problem of Boolean networks has been
studied too, [16]. Though the optimal control of Boolean networks
has been studied, and some research results have been reported
in the literature, we can note that the minimum energy control of
minimum energy control and satisfactory control of Boolean net-
works are still lacking in the literature. The minimum energy con-
trol and satisfactory control are meaningful. Optimal control deals
with the problem of finding a control law for a given system such
that a certain optimality criterion is achieved. Energy constraints
are also encountered naturally in practical systems, because any
physical system can only be powered with finite energy [17]. In
optimal control theory, the minimum energy control is one of the
most fundamental and important problems in modern control, for
example, see [18,19]. The minimum energy control is the control
u(t) that steers a system to a desired state with a minimum ex-
penditure of energy. Satisfactory control was proposed aiming at
the optimal control of sophisticated industry process. Its primary
principle is that the solving of optimal control of sophisticated in-
dustry process can be considered as a procedure of obtaining the
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satisfactory solution with the adjustment of the operator [20]. Sat-
isfactory control has been widely discussed in the literature, see
e.g. [21]. But there have been no results on the minimum energy
control and satisfactory control of Boolean network to the best of
our knowledge.

Motivated by the above, in this Letter, we study the mini-
mum energy control and satisfactory control of a Boolean network.
We want to find a control sequence that transfers a Boolean net-
work from the initial state x(0) = x0 to the desired state xd = x(s)
and minimizes the energy consumption P (u) = ∑s−1

t=0 uT (t)Q u(t).
Moreover, we want to solve the satisfactory control problem of
a Boolean network. That is, we will choose a control sequence
to ensure the performance index P (u) = ∑s−1

t=0 uT (t)Q u(t) is not
more than a prescribed value a. In general, it is possible to super-
impose other requirements like the requirement of the minimum
time from the initial state to the desired state, i.e. the optimal-
satisfactory control problem [22]. Hence, we consider the mini-
mum time optimization problem, and P (u) = ∑s−1

t=0 uT (t)Q u(t) � a
as an inequality constraint. That is, we will find the minimum
time s from the initial state x0 to the desired state xd = x(s),
s.t. P (u) = ∑s−1

t=0 uT (t)Q u(t) � a. The main tools in this Letter
are semi-tensor product of matrices and Floyd’s algorithm. Floyd’s
algorithm is a famous algorithm for finding shortest paths in a
weighted graph. Although there are some other algorithms for
finding the shortest paths, such as Dijkstra’s algorithm and John-
son’s algorithm, Floyd’s algorithm has its own advantages. For ex-
ample, Dijkstra’s algorithm needs the graph to have a single source
and the edge weights to be nonnegative, Johnson’s algorithm can
only be applied to sparse directed graphs, Floyd’s algorithm has no
such limitations [15,23]. The main contributions of this Letter are
as follows. (i) The minimum energy control of Boolean network
is studied for the first time by using the semi-tensor product, to
the best of our knowledge. (ii) Algorithms are provided to transfer
the system from the initial state to the desired state while avoid-
ing unfavorable states with minimum energy. (iii) The concepts of
optimal satisfactory is given in this Letter, and an algorithm is pre-
sented to solve this problem.

The rest of this Letter is organized as follows. Section 2 gives
the preliminaries. In Section 3, we first solve the minimum energy
control problem of the BCN. Algorithms are given to transfer the
BCN from the initial state to the desired state with the minimum
expenditure of energy. Next, the constrained minimum energy con-
trol design is given. That is to solve the minimum energy control
problem of the BCN while avoiding a set of forbidden states. Sec-
tion 4 studies the optimal-satisfactory problem of the BCN, that
is to study the minimum time optimization problem and the ex-
penditure of energy is not more than a prescribed value. Section 5
gives the illustrative example, which is followed by the conclusion
in Section 6.

2. Preliminaries

In this section, we will review the semi-tensor product (STP)
and Floyd’s algorithm.

2.1. Semi-tensor product

In this subsection, we will introduce the semi-tensor product
and some concerning results.

Definition 2.1. (See [24].) For M ∈ R
m×n and N ∈ R

p×q , their STP
(also called Cheng product), denoted by M � N , is defined as fol-
lows:

M � N := (M ⊗ Is/n)(N ⊗ Is/p),

Table 1
Some notations.

Notation Explanation

Mm×n The set of all m × n matrices
Δk Δk := {δi

k|i = 1,2, . . . ,k}, where δi
k is the ith column of the

identity matrix Ik

Ln×s A matrix A ∈ Mm×n is called a logical matrix, if the columns of
A are elements of Δm . The set of n × s logical matrices is defined
by Ln×s

Blki(A) The ith n × n square block of a matrix A ∈ Mn×mn , i = 1,2, . . . ,m
Ai, j The ith element of the jth column of a matrix A

where s is the least common multiple of n and p, and ⊗ is the
Kronecker product.

Remark 2.1. The matrix product we use in this Letter is the semi-
tensor product (STP). Since STP is a generalization of conventional
matrix product, we omit the symbol “�”, if no confusion raises.

Next, we give some other notations, which are collected in Ta-
ble 1.

Letting D := {1,0}. By identifying T = 1 ∼ δ1
2, F = 0 ∼ δ2

2 , then
the logical variable A(t) takes value from these two vectors, i.e.
A(t) ∈ Δ := Δ2 = {δ1

2, δ2
2}.

The following lemma is fundamental for the matrix expression
of the logical function.

Lemma 2.1. (See [24].) Any logical function L(A1, . . . An) with logical
arguments A1, . . . , An ∈ Δ can be expressed in a multi-linear form as

L(A1, . . . An) = ML A1 A2 · · · An,

where ML ∈L2×2n is unique, called the structure matrix of L.

2.2. Floyd’s algorithm

In this subsection, we will review Floyd’s algorithm [25,26],
which will be used in the following discussion.

A graph G is a pair G = (V , E), where V is a finite set of nodes
or vertices, and E has as elements subset of V of cardinality two
called edges. A directed graph is a graph with directions assigned
to its edges. A weighted directed graph is G = (V , E) together with
a function w from E to Z (usually just Z+; it can also be R+ when,
for example the weights are Euclidean distances). In certain cases,
we shall use more mnemonic name for weights, such as c (for cost)
or d (for distances).

For a weighted directed graph G = (V , E), where the vertices
V = {1,2, . . . , N}, denote by ci j the weight of the edge (i, j). Set

dij(0) =
{

ci j, (i, j) ∈ E and i �= j,
∞, otherwise.

The Floyd’s algorithm is: For α = 1, . . . , N , i = 1, . . . , N , i �= α,
j = 1, . . . , N , j �= α, iteratively calculate

dij(α) = min
{

dij(α − 1),diα(α − 1) + dα j(α − 1)
}
.

Assume there are no negative cycles, that is, there are no cycles
of negative length, then dij(N) is the sum of weights through
the shortest path from vertex i to vertex j. dij(α) is the sum of
weights through the shortest path from vertex i to vertex j which
only passes some nodes contained in {1,2, . . . ,α}.

3. Main results

A Boolean control network with n variables and m inputs is
described as
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