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It has been shown that like-charged particles inside electroneutral plasma can be attracted to each
other, in contrast with non-electroneutral plasma considered in the literature, where such particles
electrostatically repulse when they have any distance between them. We have calculated an analytical
formula for the free energy of electroneutral three-component two-temperature plasma, from the basis
of the Poisson–Boltzmann electrostatic equation. It is shown that free energy has a local minimum when
the temperature of electrons exceeds 2000 K, when the quantity of electrons is less than 20% of the
total quantity of negatively charged particles, when the temperature of ions is 300 K and when the
distance between ions is several Debye radii. Plasma of a specified structure, temperature and density
can mimic a fireball substance, in contrast with, for example, two-component isothermal plasma which
has no minimum free energy at any interparticle distance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A fireball is a fascinating phenomenon observed in both na-
ture and laboratory conditions, and has a substance density close
to the density of atmospheric air. Fireballs are spherical, with typ-
ical radius from millimetres to tens of centimetres. They possess a
large internal energy, glow, and have a typical life time from sec-
onds to a number of minutes [1–11]. The nature and mechanism
of the formation of fireballs is still not completely clear. There
are more than one hundred known models of this phenomenon,
and plasma-based models are popular among them. They can ex-
plain glow and energy content, but their main drawback consists
of an inability to describe the fireball’s macroscopic life time with-
out an external supply of energy. The macroscopic life time of
plasma is possible at low recombination speeds, as well as with
the existence of a special mechanism of substance retention. With-
out these listed factors, the plasma either recombines, or bounces
apart with an inertial time of less than several thousandths of a
second. To explain the low recombination speed, the Rydberg idea
[12] and non-ideal plasma [13,14] can be considered, but the pos-
sibility of spatial retention of the plasma substance isn’t clear, and
requires further comprehensive study.
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The ability to retain the plasma substance assumes the exis-
tence of the special mechanism of attraction of like-charged par-
ticles in a plasma. In frequently quoted works [15,16], the possi-
bility of electrostatic attraction between like-charged particles put
into an electroneutral plasma was studied. The main conclusion
of these reports, from the basis of the Poisson–Boltzmann equa-
tion, was the default of the attraction forces between particles and,
therefore, the presence of repulsion forces at any distance between
the particles. This conclusion on the impossibility of electrostatic
attraction between the like-charged particles is a serious stimula-
tion to research alternative mechanisms of interparticle interaction,
for example, wakefield attraction [17], or the collective long-range
attraction arising when particle flows interact in plasma [18–21].
However, it should be noted that the conclusion of the default of
the electrostatic attraction only concerns the charges of the non-
electroneutral systems considered in [15,16]. In order for the sys-
tem to be electroneutral (the most common situation required by
the experiments), it is necessary to place not only the like-charged
test particles into the initial neutral plasma, but also charge car-
riers that compensate the charge of the test particles. The results
obtained from systems where estimation of the electroneutrality is
conducted in this way may fundamentally differ from the results
for systems where the condition of electroneutrality isn’t fulfilled.

This report shows, on the basis of the analytical solution of
the Poisson–Boltzmann equation, the possibility of long-range elec-
trostatic attraction inside the electroneutral system of charges.
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Fig. 1. Example of a flat structure formed of plasma ions. The electroneutrality con-
dition is satisfied in the sphere of radius d.

We calculate the free energy of two-temperature, three-component
plasma, and demonstrate that it has a local minimum at low elec-
tronic density, high electronic temperature and when the inter-
particle distance is comparable with the Debye radius. We also
determine the size of the interparticle attraction existence area.
We believe that such plasma can simulate the characteristics of a
fireball substance.

2. Problem setting and solution

We use the scheme of calculation of free energy similar to that
reported in [22]:

1. Construct the Poisson–Boltzmann equation and boundary con-
ditions for the potential of the charged particle in three-
component two-temperature plasma.

2. By means of the constructed equation, we calculate the parti-
cle potential in plasma and subtract the proper Coulomb po-
tential of the particle. Thereby, we determine the correlation
potential created by the plasma on the surface of a particle.

3. Calculate the correlation and free energy of a particle, and in-
vestigate their values at a minimum.

We believe that plasma with optimum structure, temperature
and density can have a minimum of free energy and, therefore,
tend to some spatial order. Thus, we consider hypothetical infinite
three-dimensional plasma with ions ordered similar to arrange-
ment of ions inside an ionic crystal. Let the plasma consist of
three grades of particles: single-charged positive ions with radius
R and concentration N+; single-charged negative ions with ra-
dius R and concentration N−; and electrons with concentration
Ne . Then, the equation of electroneutrality of the plasma looks like
N+ = N− + Ne . At this point, we denote the number of electrons
contributing to the total quantity of negatively charged particles,
χ = Ne/(Ne + N−), where 0 < χ � 1, and let’s also divide both
members of the equation into N+ . Then the electroneutrality equa-
tion per one positive ion will be as follows:

1︸︷︷︸
quantity

of positive
ions

= (1 − χ)︸ ︷︷ ︸
quantity

of negative
ions

+ χ︸︷︷︸
quantity

of electrons

. (1)

We define that positive and negative ions possess identical tem-
peratures Ti . The temperature of the electrons, Te , is considered to
be different from the temperature of the ions (Te > Ti ).

We fix the origin of the coordinate system at the centre of any
positively charged ion, as shown in Fig. 1. The electric field of the
ion is partially screened by the electrons (quantity χ ), located in
the interionic space. Complete screening of the ion field is per-
formed by the negative ions in the first coordination sphere of

radius d (the d-sphere, d > R), with quantity (1 − χ ). Please note
that the number of electrons χ , and of negative ions (1 −χ ), mak-
ing part of screening of a field of one positive ion, are both less
than one unit. It is nothing strange here, as it is only mathematical
result. Actually, each electron participates in screening of the fields
of several positive ions, that is the electron belongs to a concrete
positive ion partially. Also, each of 5–6 (for a simple cubic lattice
with small irregularities in ideality) of negative ions belonging to
the first coordination sphere of a positive ion, belongs also to 5–6
coordination spheres of the neighboring positive ions. As a result,
the coordination sphere of one positive ion shares (1 − χ ) of neg-
ative ions.

d is equal to half of the distance between nearest-neighbor like-
charged ions. We consider, for simplicity, that the charge of the
negative ions is evenly distributed over the d-sphere surface. (This
assumption is rather rough, but it allows to make the problem
of screening spherical and get simple analytical solutions keep-
ing high-grade picture of the phenomenon.) The electric field on
the surface of the d-sphere equals zero, due to electroneutral-
ity. We now employ a spherical coordinates system. The Poisson–
Boltzmann equation for potential φ inside the d-sphere, and the
corresponding boundary conditions, appear as follows:

�ϕ = e

ε0
Ne = e

ε0
N0 exp

(
eϕ

kTe

)
, (2)

∂ϕ

∂r

∣∣∣∣
r=R

= −e

4πε0 R2
,

∂ϕ

∂r
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r=d−0

= −e(1 − χ)

4πε0d2
(3)

where N0 = χ
(4/3)π(d3−R3)

is the average concentration of electrons;

(4/3)π(d3 − R3) is the volume inside the d-sphere available to
the electrons; k is Boltzmann’s constant; ε0 is the electric con-
stant; and e is the charge of the electron. Please note that the first
boundary condition (3) sets the size of electric field on the surface
of a positive ion. The second boundary condition (3) determines
field partially screened by electrons on the inside of d-sphere sur-
face. On the outer side of the d-sphere surface the electric field
intensity snaps because of a surface negative charge (1 − χ)e, and
equals zero. The electric field intensity equal to zero on the outer
side of the d-sphere surface is guarantor of a full electroneutrality
of the charge system inside d-sphere.

We suggest that the plasma is well-dispersed and the radius of
ions is large, so that the plasma can be considered ideal. Then the
exponent of (2) can be expanded into a series, such that eϕ

kTe
� 1.

As a result, we obtain the simple equation:

�ϕ = 1

L2

(
ϕ + kTe

e

)
, (4)

where L = (
ε0kTe
e2 N0

)0.5 is the plasma Debye length, calculated on the

basis of the electron parameters.
The general solution of Eq. (4) in spherical coordinates looks

like:

ϕ = C1

r
exp

(
− r − R

L

)
+ C2

r
exp

(
r − R

L

)
− kTe

e
. (5)

We substitute (5) into (3), and define constants C1 and C2. Thus,
we find the potential of a positively charged ion in plasma.

In the following, we calculate the correlation potential ϕ+ , cre-
ated by the plasma on the surface of a positive ion, through sub-
traction of the Coulomb potential of the ion from the potential (5),

e
4πε0r :
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