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In this Letter, the purity of quantum states is applied to probe chaotic dissipative dynamics. To achieve
this goal, a comparative analysis of regular and chaotic regimes of nonlinear dissipative oscillator (NDO)
are performed on the base of excitation number and the purity of oscillatory states. While the chaotic
regime is identified in our semiclassical approach by means of strange attractors in Poincaré section
and with the Lyapunov exponent, the state in the quantum regime is treated via the Wigner function.
Specifically, interesting quantum purity effects that accompany the chaotic dynamics are elucidated in
this Letter for NDO system driven by either: (i) a time-modulated field, or (ii) a sequence of pulses with
Gaussian time-dependent envelopes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear dissipative systems demonstrating chaotic behavior
in their dynamics are still the subject of much attention [1–3]. The
early studies of dissipative chaotic systems date back to the works
[4]. The investigations of quantum chaotic systems are distinctly
connected with the quantum–classical correspondence problem in
general, and with environment induced decoherence and dissipa-
tion in particular. It has been recognized [5] that decoherence has
rather unique properties for systems whose classical analogs dis-
play chaos. Several methods have been proposed to determine
whether a quantum dissipative system exhibits chaotic behav-
ior. At this point, we note that quite generally, chaos in classical
conservative and dissipative systems with noise, has completely
different properties. For example, strange attractors on Poincaré
section can appear only in dissipative systems. The most success-
ful approach that probes quantum dissipative chaos seems to be
quantum tomographic methods based on the measurement of the
Wigner function, which is a quantum quasi-distribution in phase-
space. In this way, the connection between quantum and classical
treatment of chaos can be realized by means of a comparison be-
tween strange attractors in the classical Poincaré section and the
contour plots of the Wigner functions [6–8]. However, such man-
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ifestation of chaos seems to be hardly realized by experiments
because Wigner function can only be obtained through data post-
processing. On the other hand, alternative methods that probe
quantum dissipative chaos involve considerations of entropic char-
acteristics, analysis of statistics of excitation number [9,10], meth-
ods based on the fidelity decay [11], and Kullback–Leibler quantum
divergence [12].

In this Letter, we discuss an indirect method that reveals quan-
tum dissipative chaos based on an analysis of the purity of states.
Purity is a quantity that measures the statistical characteristic of
states and decoherence. It is defined through the density matrix
ρ of the system as P = Tr(ρ2). In consequence, the purity of any
pure state is 1 and mixed states less than 1.

The goal of this Letter is to investigate the variation of the pu-
rity of quantum states in regular and chaotic systems. We shall
show that purity allows us to distinguish between the ordered and
chaotic quantum dissipative dynamics. In particular, we demon-
strate that this program can be realized through the considera-
tion of two schemes of nonlinear dissipative oscillator (NDO): one
driven by a continuously modulated pump field, while the other
under the action of a periodic sequence of identical pulses with
Gaussian envelopes.

2. Purity and models of nonlinear oscillators

The purity of the quantum states, which is defined via the den-
sity matrix of the system as Tr(ρ2), is connected to the linear
entropy SL in the following manner:
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SL = 1 − Tr
(
ρ2) (1)

and is related to the linear quantum divergence derived from the
Kullback–Leibler quantum divergence [12]. Note that SL can be ob-
tained from the von Neumann entropy

S = Tr
(
ρ ln(ρ)

)
(2)

as a lower-order approximation.
For an ensemble of mixed states the density matrix reads as

ρ =
∑

Pψ j |ψ j〉〈ψ j|, (3)

where Pψ j is the probability of occurrence of state ψ j . In this case,
the purity takes the form

P = Tr
(
ρ2) =

∞∑
l=0

P 2
ψ j

. (4)

In particular, for thermal light with a photon population Pψ j =
nn

(n+1)(1+n) , the purity can be calculated as

P = 1

2n + 1
, (5)

where n is the mean number of thermal photons. From Eq. (5) it
is evident that purity decreases as excitation number increases.

In this Letter, we employ quantum purity as a tool to analyse
quantum dynamics of NDO which allows us to determine whether
or not the system has reached the chaotic regimes. It is easy to
realize that in general the purity of an ensemble of oscillatory
states strongly depends on the operational regimes of NDO. More
specifically, an increase in the excitation numbers would raise the
number of mixing oscillatory states, leading to a decrease in purity
which is apparent from Eq. (5). In addition, diffusion and decoher-
ence of oscillatory modes are also relevant to the level of purity.
Thus, in the following, we analyse the purity using the density ma-
trix of NDO ρ(t) for both the regular and chaotic regimes.

We consider a model of anharmonic oscillator driven by ex-
ternal field with time-modulated amplitude that is based on the
following Hamiltonian in the rotating wave approximation:

H = h̄�a+a + h̄
(
a+a

)2 + h̄
(

f (t)a+ + f (t)∗a
)
, (6)

where a+ and a are the oscillatory creation and annihilation opera-
tors respectively, χ is the nonlinearity strength, and � = ω0 −ω is
the detuning between the mean frequency of the driving field and
the frequency of the oscillator. In the case of a constant amplitude,
i.e. f (t) = Ω , this Hamiltonian describes a nonlinear oscillator
driven by a monochromatic force. In this Letter, we shall consider
two cases of driving force: (i) f (t) = f0 + f1 exp(δt), where δ is the
frequency of modulation; and (ii)

f (t) = Ω
∑

e−(t−t0−nτ )2/T 2
. (7)

For the latter case, the time-dependent interaction term is pro-
portional to the amplitude of the driving field Ω , and consists of
Gaussian pulses with duration T separated by time intervals τ .

The evolution of the system of interest is governed by the fol-
lowing master equation for the reduced density matrix of the os-
cillatory mode in the interaction picture:

dρ

dt
= − i

h̄
[H,ρ] +

∑
i=1,2

(
LiρL+

i − 1

2
L+

i Liρ − 1

2
ρL+

i Li

)
, (8)

where L1 = √
(N + 1)γ a and L2 = √

Nγ a+ are the Lindblad op-
erators, γ is a dissipation rate, and N denotes the mean number
of quanta of a heath bath. To study the pure quantum effects, we

focus below on cases of very low reservoir temperatures which,
however, still ought to be larger than the characteristic tempera-
ture T � Tcr = h̄γ /kB .

It should be noted that in this approach dissipation and deco-
herence effects are described simultaneously by the same Lindblad
terms in Eq. (8). Thus, this approach allows the control of dissipa-
tion and decoherence in NDO under time-modulated driving. Note,
that quantum effects in NDO with a time-modulated driving force
have been studied in the context of quantum stochastic resonance
[13], quantum dissipative chaos [6–10], quantum interference as-
sisted by a bistability [14] and generation of superposition of Fock
states in the presence of decoherence due to the kicking of oscil-
latory dynamics [15].

In the semiclassical approach, the corresponding equation of
motion for the dimensionless mean amplitude of oscillatory mode
α = Tr(ρa) has the following form:

dα

dt
= −i

[
� + χ + 2|α|2χ]

α + i f (t)Ω − γ α. (9)

This equation modifies the standard Duffing equation in the case
of NDO with time-dependent coefficient.

These models seem experimentally feasible and can be re-
alized in several experimental schemes. We mention nano-elec-
tromechanical systems and nano-optomechanical systems based
on various nonlinear oscillators [16,17], and superconducting de-
vices based on the nonlinearity of the Josephson junction (JJ)
[18–20] that exhibits a wide variety of quantum oscillatory phe-
nomena.

3. Purity as an indicator of chaos

In this section, we investigate the purity of quantum oscillatory
states for various regimes of NDO by performing detailed compar-
ative analysis of purity for both cases of regular and chaotic dy-
namics. In general, the purity of an ensemble of oscillatory states
strongly depends on the level of the excitation numbers which is
particularly apparent from Eq. (5). Therefore, in our comparative
analysis, we consider regimes of regular and chaotic dynamics with
the same levels of oscillatory excitation numbers. We shall con-
sider two schemes of nonlinear dissipative oscillator (NDO) in this
analysis: a NDO driven by a continuously modulated pump field;
and a NDO under the action of a periodic sequence of identical
pulses with Gaussian envelopes.

The time evolution of NDO driven by an external time-
modulated force cannot be solved analytically, and hence suitable
numerical methods have to be employed. Indeed, only NDO driven
by monochromatic field has been solved analytically up to now in
terms of the Fokker–Planck equation in the complex-P representa-
tion and in the steady-state regime by consideration of all orders
of dissipation and decoherence. Applications of these results to
some oscillatory models are given in Refs. [21,22].

We shall determine the excitation number and the Wigner
functions of oscillatory mode numerically on the base of master
equation by means of the quantum state diffusion method [23].
For the semiclassical approach, we shall calculate the Lyapunov
exponent and the Poincaré section according to the framework of
Eq. (9). For the Lyapunov exponent, the analysis is performed on
the semiclassical time series determined from Eq. (9) according
to [24], which gives the maximum Lyapunov exponent. Specifi-
cally, the definition of the Lyapunov exponent is given by L =

1
�t ln ‖x2(t)−x1(t)‖

‖x2(t0)−x1(t0)‖ , where x = (Re(α), Im(α),β), with β being the
time variable defined through dβ/dt = 1 which augments Eq. (9)
to create an autonomous system. Note that x2 and x1 represent
two trajectories that are very close together at the initial time t0.
Furthermore, �t = t − t0, with t → ∞. For L > 0 the system shows
chaotic dynamics. L = 0 corresponds to the case of conservative
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