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We investigate the physical principle driving pattern recognition in a previously introduced Hopfield-
like neural network circuit (Hölzel and Krischer, 2011 [13]). Effectively, this system is a network of
Kuramoto oscillators with a coupling matrix defined by the Hebbian rule. We calculate the average
entropy production 〈dS/dt〉 of all neurons in the network for an arbitrary network state and show that
the obtained expression for 〈dS/dt〉 is a potential function for the dynamics of the network. Therefore,
pattern recognition in a Hebbian network of Kuramoto oscillators is equivalent to the minimization of
entropy production for the implementation at hand. Moreover, it is likely that all Hopfield-like networks
implemented as open systems follow this mechanism.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Networks of phase oscillators with a coupling topology based
on the Hebbian learning rule have received considerable attention
by the neural network community in the past two decades [1–13].
The appeal of these networks is twofold: On the one hand, oscil-
latory neurons are known to play a significant role for information
processing in biological systems (see for example the review by
Wang [14], especially Sections II–IV and the references therein).
On the other hand, the dynamics of Hebbian Kuramoto-networks
are closely related to the Hopfield model [15] of an autoassociative
memory, which has a comparatively simple physical interpretation
in the form of the Ising spin model. Hence, the dynamics of large
Hebbian Kuramoto-networks are tractable by the methods of sta-
tistical physics.

In its most simple form, a Hebbian Kuramoto-network of N
phase oscillators is defined by the equations

ϕ̇i = 1

N

N∑
j=1

wij sin(ϕ j − ϕi), wij =
M∑

k=1

ξk
i ξk

j . (1)

Here, ϕi is the phase shift of the i-th oscillator with the phase ϑi
given by ϑi(t) = Ωt + ϕi(t); all oscillators have the same natural
frequency Ω . The coupling matrix wij , representing the synaptic
weights connecting the oscillatory neurons, is determined by the
Hebbian rule based on the M memorized patterns ξk , k = 1 . . . M .
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The ξk are binary pattern vectors of length N with entries ξk
i = ±1.

Note that in the following, we are using the terms “oscillator” and
“oscillatory neuron” synonymously. We use the expression “neu-
ron” because of the mathematical similarity to the neurons in the
original Hopfield model, which will become apparent a little fur-
ther below.

The system (1) is able to recognize a defective binary pattern ξ
as one of the ξk if the memorized patterns are suitably chosen (the
maximal load rate for random patterns is α = M/N = 0.042) [6].
Here, defective means that ξ differs from one of the memorized
patterns (e.g. ξ1) in a few entries, while it is substantially different
from the others (i.e. ξ · ξ1 =O(N) and ξ · ξ i �=1 =O(

√
N)).

For pattern recognition, the network is initialized to ξ by fixing
the phase shifts ϕinitial

i to either 0 or π , such that cos(ϕinitial
i ) = ξi ,

which is an unstable equilibrium of (1). Under the influence of
arbitrarily small fluctuations, the system will now evolve towards
a final state close to the correctly memorized pattern ξ1, char-
acterized by ξ1

i cos(ϕfinal
i ) > 0. Note that the final state does not

correspond perfectly to ξ1, which would require ξ1
i cos(ϕfinal

i ) = 1.
Still, the network retrieves the binary information without losses.
Also note that Eqs. (1) are invariant under a global rotation of all
phase shifts, but we described the pattern recognition process in a
special frame of reference for simplicity.

There is a potential function E(ϕ) of the dynamical system (1),
for which ϕ̇i = −∂ E/∂ϕi , given by

−E(ϕ) = 1

2N

N∑
i=1

N∑
j=1

wij cos(ϕi − ϕ j). (2)
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The dynamics of pattern recognition can also be understood as
the tendency of the network to evolve towards a minimum of
this potential function. This potential function is identical to the
one for the discrete Hopfield model with the two output levels
V 0 = cosπ = −1 and V 1 = cos 0 = 1 (compare Eq. (7) in Hop-
field’s paper [15]). The main difference in the system at hand is
the inclusion of intermediate states, according to (2).

In the rest of the Letter, we will show that for a particular ar-
chitecture of a Hebbian Kuramoto-network, E(ϕ) is proportional to
the entropy production of the oscillatory neurons. Thus, successful
pattern recognition is equivalent to the minimization of the en-
tropy production of the network.

The architecture we consider in this Letter, which has been
recently introduced [13], is briefly described in the next section.
Other than in the model above, this implementation of a Heb-
bian Kuramoto-network uses oscillators with deliberately chosen
large differences in frequency. This allows for the adjustment of
the synaptic weights of the network by a single experimental pa-
rameter that varies in time [8]. The effective dynamics of the phase
shifts, however, remain the same.

2. Network circuit

The electrical circuit of the oscillatory network is shown in
Fig. 1. It features N autonomously oscillating circuits, where each
frequency is unique. Each oscillator fulfills two conditions: First,
the individual output signals Ui can be written as the sine of
a phase variable ϑi with a constant amplitude Uamp, i.e. Ui(t) =
Uamp sin ϑi(t) = Uamp sin(Ωit + ϕi(t)). Here, small deviations from
the original frequency Ωi of an oscillator are described by the
phase shift ϕi . Note that, even as ϑi is increasing by 2π for each
period, ϕi may be stationary. To maintain this first condition, the
oscillator can only react to external stimuli by adjusting its phase.
The second condition on each oscillator is that, when it is sub-
jected to an infinitesimal voltage deviation dUi caused by the ex-
ternal circuitry, the jump in the voltage is instantly translated into
a change in phase dϑi ∝ cosϑidUi . In other words, the phase re-
sponse curve of each oscillator has to be proportional to cos ϑi .

The frequencies Ωi form a so-called Golomb ruler [16], which
means that Ωi − Ω j �= Ωk − Ωl for different pairs i, j and k, l
of oscillators; also, for the minimum and maximum frequencies,
Ωmin > Ωmax/3 holds, such that Ωi − Ω j �= Ωk + Ωl for any pair
i, j and k, l of oscillators (the reason for this choice of frequencies
will become apparent in Section 3). All oscillators are connected
to a common circuit node through an individual resistance R int,
which provides the necessary degree of freedom for each oscillator.
From this common node, an external impedance Zext(t) is con-
nected to ground. Unless Zext = 0, the oscillators are globally cou-
pled via the potential Uext at the common node, which depends
on Iext = ∑

I int,i . The external impedance consists of a variable re-
sistance Rvar(t) = R0 + Rcoup/N

∑
i, j wij cos((Ωi − Ω j)t), a serial

negative impedance Zser = −R0 and a parallel negative impedance
Zpar = −R int/N . Rcoup is a measure for the strength of the cou-
pling – if Rcoup = 0, then also Zext = 0. The coefficients wij are the
same as the synaptic weights in Eq. (1).

In the configuration described above, the phase shifts of the
electrical oscillators behave effectively as in (1), if the coupling is
weak enough (i.e. if Zext is sufficiently small) [13].

Note that any type of experimental oscillator (an example are
van der Pol oscillators [17]) will only approximately fulfill the con-
ditions mentioned above. Also, the negative impedances Zpar and
Zser will show some kind of non-ideal behavior in any experi-
mental realization (in particular there will be a certain delay in
the output currents with respect to the input voltages, depend-
ing on the specific active circuit elements that are used). Both
effects will lead to deviations from the dynamics of (1), which can,

Fig. 1. Circuit diagram of a neural network of sinusoidal electrical oscillators that are
coupled globally through an external impedance Zext(t). Zpar and Zser are negative
impedances, Rvar is the variable resistance.

however, be kept (almost) arbitrarily small with sufficient experi-
mental effort (i.e. using high bandwidth amplifiers to implement
the negative impedances together with near-harmonic, frequency
stable oscillators that are slow compared to the amplifier band-
width). Therefore, for the rest of the Letter, we will assume both
that the oscillators are perfectly sinusoidal with a phase response
curve proportional to cos ϑ and that the negative impedances do
not introduce any delay. To illustrate that this approach is indeed
justified, we present an example experiment in Appendix A, where
pattern recognition is not disturbed by the non-ideal behavior of
the circuitry.

3. Entropy production in the circuit

There is an interesting physical interpretation of the dynami-
cal behavior of the phase shifts, other than the fact that it is the
solution of the differential equation (1): The system prefers states
in which the average combined entropy production 〈dS/dt〉osc of
all oscillators is minimal. This can also be phrased differently: In
a preferred state of the system, the average contribution 〈P 〉osc of
the oscillators to the overall average power 〈P 〉 dissipated in the
network is minimal.

To prove these statements, in the following we will compute
the average power output 〈P 〉osc(ϕ) = 〈dS/dt〉osc(ϕ) · T of all oscil-
lators for any given vector ϕ of phase shifts in the network. Here,
T is the ambient temperature and ϕ is the vector with elements
(ϕ1, . . . , ϕN ) = (ϑ1 − Ω1t, . . . , ϑN − ΩNt), which will take on a sta-
tionary value after a transient period, due to the fact that (1) has a
bounded potential function.

Both the oscillators and the negative impedances supply power
to the circuit in Fig. 1. In a stationary state of the network, the
dissipated power P is equal to the supplied power:

P = Posc + P supp
ext , (3)

where Posc is the power supplied by all active elements in the
oscillators’ circuitry and P supp

ext is the power supplied by all ac-
tive elements in the circuitry implementing Zser and Zpar. The
dissipated power can also be split up according to where the dis-
sipation occurs:

P = P int + P diss
ext , (4)
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