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Elasticity problems of quasicrystals with 18-fold rotational symmetry are studied. Constitutive equations
and governing equations are obtained. For static elasticity problems, the displacement vectors in two
phason fields are expressed in terms of two pairs of associated harmonic functions or two analytic
functions. For dynamic problems, the displacement vectors can be represented in terms of an auxiliary
function satisfying a fourth-order partial differential equation. A general solution of phasons is given by
the solution of two diffusion equations. Phason elastic fields induced by a dislocation in a quasicrystal
with 18-fold symmetry are determined and exhibit an inverse singularity.
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1. Introduction

Quasicrystals of icosahedral symmetry were observed in a
rapidly cooled Al–Mn alloy for the first time in 1982 and reported
in 1984 [1]. This discovery is one of the greatest discoveries in con-
densed matter and the discoverer, Shechtman, won the 2011 Nobel
Prize in Chemistry for the discovery of quasicrystals. Conventional
crystals only allow 2-, 3-, 4-, 6-fold rotational symmetries, and
quasicrystals as an intermediate state between crystals and glassy
solids possess quasiperiodic long-range translational symmetry and
noncrystallographic rotational symmetry [2]. Up to now, quasicrys-
tals with 5-, 8-, 10-, and 12-fold symmetry have been observed
in experiment [1,3–5]. For these classes of quasicrystals, the re-
search on their physical, mechanical, and electronic properties has
attracted more and more attention of researchers. In particular, for
quasicrystals as a new class of solids, their elasticity and deforma-
tion mechanism have been extensively studied from macroscopic
continuum approach [6].

Quasicrystals may be understood as a projection of higher-
dimensional periodic space [7]. Accordingly, differing from ordi-
nary crystals possessing three displacement components as func-
tions of three spacial coordinates, in quasicrystals, in addition to
conventional three displacement components describing transla-
tions of particles, there are other displacement components which
are used to describe rearrangements of local atomic configura-
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tions. Thus there are two typical subspaces, called parallel (physi-
cal, phonon) subspace and perpendicular (complementary, phason)
subspace, respectively. Due to the presence of phasons, macro-
scopic properties of quasicrystals have apparent differences. For
example, dislocations as typical topological defects are also in qua-
sicrystals, but with nonvanishing phason’s components accompa-
nied with the Burgers vector of dislocations [8,9]. For quasicrystals
with 5-, 8-, 10-, and 12-fold symmetry, elasticity theory has been
established [10] and some typical solutions related to dislocations
and cracks in the abovementioned quasicrystals have been solved
by many researchers [11]. For instance, explicit expressions for the
stress and displacement fields induced by a dislocation have been
obtained with the aid of perturbation analysis method [12,13],
Green’s function [14,15], Fourier transform technique [16,17], and
complex potential method [18–20], etc. Also, a static crack prob-
lem in quasicrystals has been tackled by various techniques (see
e.g. [21,22]).

In the abovementioned researches, elasticity of quasicrystals
only applies to quasicrystals with 5-, 8-, 10-, and 12-fold rota-
tional symmetry. These quasicrystals contain one phonon field and
one phason field. Recently, quasicrystals with 18-fold diffraction
symmetry were observed in 2011 by Fischer et al. [23]. The latter
differ from the former and must be embedded in a six-dimensional
periodic space. Quasicrystals with 18-fold rotational symmetry em-
bedded in a six-dimensional space were predicted in 1994 by Hu
et al. [24], who studied the invariants of free elastic energy den-
sity as the quadratic form of all strains by the group representation
theory. For such two-dimensional quasicrystals, in addition to a
phonon field, two coupled phason fields are present. Consequently,
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the elasticity theory applying to 5-, 8-, 10-, and 12-fold symmet-
ric quasicrystals does not suit for 18-fold symmetric quasicrystals.
There is little information on elastic analysis of 18-fold symmetric
quasicrystals, to the best of the authors’ knowledge.

This Letter considers elasticity of quasicrystals with 18-fold
symmetry. First, constitutive equations or generalized Hooke’s law
describing stress–strain relationships are established. Furthermore,
basic governing equations are given for static and dynamic prob-
lems. For static problems, the displacement vectors in two pha-
son fields can be converted to two analytic functions, whereas
for dynamic problems, a general solution of diffusion phasons is
constructed. Finally, the stress fields induced by a dislocation in
18-fold symmetric quasicrystals are determined.

2. Basic equations

Consider a two-dimensional 18-fold symmetric quasicrystal
which in the quasiperiodic plane can be understood as a projection
of a six-dimensional periodic space. This class of two-dimensional
quasicrystals are different from 5-fold quasicrystals. The latter only
possesses a phason field, while the former has two coupled pha-
son fields. Within the framework of continuum elasticity theory,
three displacement vectors are present, one lying in the paral-
lel subspace and two in the complementary subspaces denoted
as u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3), respec-
tively. For convenience, in what follows the v and w phason fields
are called the first and second phason fields, respectively. Since
18-fold symmetric quasicrystals are a two-dimensional quasiperi-
odic structure where the displacement vector in the quasiperiodic
plane contain six components, two in the phonon field, two in the
first phason field, and the remaining two in the second phason
field. That is, v3 = w3 = 0. We take x1 and x2 as two mutual per-
pendicular axes in the quasiperiodic plane, and x3 as the periodic
axis. Using group representation theory, the energy density has
been derived according to the quadratic invariants of all the strain
components. In particular, for quasicrystals with 18-fold symmetry,
the quadratic invariants of the energy density can be expressed as
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]
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(1)

where the summation convention on repeated indices has been
used, λ and μ are the Lame constants, L∗

j and K ∗
j ( j = 1,2) rep-

resent positive elastic constants for two phason fields, R2 is the
phason–phason coupling constant; εi j, vij and wij , are defined by
the displacements as follows, respectively

εi j = 1

2
(∂ jui + ∂iu j), (2)

vij = ∂ j vi, (3)

wij = ∂ j wi, (4)

where ∂/∂x j is abbreviated as ∂ j . Consequently, in the x1x2-plane
using

Tij = ∂U

∂εi j
, Q ij = ∂U

∂vij
, Hij = ∂U

∂ wij
, (5)

one easily obtains the following constitutive equations of 18-fold
symmetric quasicrystals in the quasiperiodic plane

T11 = (λ + 2μ)ε11 + λε22, (6)

T22 = λε11 + (λ + 2μ)ε22, (7)

T12 = 2με12, (8)

Q 11 = L1 v11 + L2 v22 + R2(w11 − w22), (9)

Q 22 = L2 v11 + L1 v22 − R2(w11 − w22), (10)

Q 12 = L1 v12 − L2 v21 + R2(w21 + w12), (11)

Q 21 = −L2 v12 + L1 v21 + R2(w21 + w12), (12)

H11 = K1 w11 + K2 w22 + R2(v11 − v22), (13)

H22 = K2 w11 + K1 w22 − R2(v11 − v22), (14)

H12 = K1 w12 − K2 w21 + R2(v12 + v21), (15)

H21 = K1 w21 − K2 w12 + R2(v12 + v21), (16)

where Tij ’s are phonon stress components, Q ij and Hij are phason
stress components, which inhibit rearrangements of local atoms on
a small scale and called as “pinning stresses”. For convenience, we
have used notations L1 = 2(L∗

1 + L∗
2), L2 = 2(L∗

1 − L∗
2), K1 = 2(K ∗

1 +
K ∗

2 ), K2 = 2(K ∗
1 − K ∗

2 ). Obviously, λ,μ, L1 and K1 are positive, L2
and K2 may be positive and negative.

From the above definitions, one easily finds

εi j = ε ji, vij �= v ji, wij �= w ji . (17)

Furthermore, with the aid of constitutive equations, we find that
the phonon stresses/strains are still symmetric tensor, but the pha-
son stresses/strains are no longer symmetric tensor. That is,

Tij = T ji, Q ij �= Q ji, Hij �= H ji . (18)

It is interesting to note that the basic equations of the phonon field
are identical to those for ordinary crystals and they are uncou-
pled with the basic equations of two phason fields. As a result, the
phonon field can be solved using the well-known elasticity theory
for isotropic materials. Due to this reason, of much interest is elas-
ticity problems related to the phason fields, which is new and does
not appear for the classical elasticity theory.

Dynamic response of quasicrystals is a subject of considerable
interest. Knowledge of dynamic response of phason in quasicrystals
is very limited. A possible reason is that the physical mechanism
of phase motion is not very clear. At the beginning of research
of quasicrystals, phasons are usually assumed to obey Newton’s
second law in analogy to phonons [10],

∂ j Q i j = ρ1 v̈ i, ∂ j Hi j = ρ2 ẅi, (19)

where a dot denotes differentiation with respect to time t , ρ1 and
ρ2 denote the effective phason mass density in the two perpen-
dicular subspaces, respectively, which are different from ordinary
mass density ρ in the parallel subspace. Here phason body forces
are neglected. Now, due to some evidence observed in experiment,
researchers prefer to assume that phasons exhibit diffusion char-
acteristics [25,26], rather than to adopt propagating phasons, i.e.,

∂ j Q i j = κ1 v̇ i, ∂ j Hi j = κ2 ẇi, (20)

where κ1 and κ2 are material constants describing the damping
or friction effect, which are the inverse of the dissipative kinetic
coefficient Γv and Γw of the material. Furthermore, if diffusion
and propagation characteristics are both taken into account, it is
natural to consider the case where the phasons can propagate with
damping. Thus we have

∂ j Q i j − κ1 v̇ i = ρ1 v̈ i, ∂ j Hi j − κ2 ẇi = ρ2 ẅi . (21)
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