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We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state
qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as
a CNOT gate, near-faithful when |α|2 � 25 and independent of the input state. The key element for
realizing the proposed CNOT scheme is the entangled four-mode state.
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1. Introduction

After Knill et al. [1] showed that linear optics alone would suf-
fice to implement efficient quantum computing, quantum optics,
that had proved to be a fertile field for experimental tests of quan-
tum science, brought a great perspective to quantum information
processing (QIP).

In [1] efficient quantum computation is achieved using single
photon sources and single photon detectors, but the alternate idea
of encoding quantum information on continuous variables [2] has
lead to a number of proposals for realizing multi-photon [3–7] and
hybrid (coherent states and single photon) [8] quantum computa-
tions. The hybrid scheme proposed in [8] is, actually, more efficient
than pure linear optical and pure coherent state quantum comput-
ers.

The main drawback of proposals [3–5] is that “hard”, non-linear
interactions are required in-line of the computation, and these
would be difficult to implement in practice.

The elegant scheme proposed in [6] requires only relatively
simple linear optical networks and photon counting, but, unfor-
tunately, the amplitude of the required superpositions of coherent
states is prohibitively large. On the other hand, the scheme pro-
posed in [7], that was built on the idea found in [6], requires only
“easy”, linear in-line interactions, since all the hard interactions
are only required for off-line production of resource states, and is
based on much smaller superposition states.

The universal set of gates presented in [7] is composed by
a phase rotation gate, a superposition gate (that implements a
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rotation of π/2 about X) and a two-qubit controlled phase gate.
If a CNOT gate using coherent states is proposed, the universal set
of gates for [7] can be simplified, since any quantum circuit can be
built using single qubit gates and CNOTs. Our goal here is to pro-
pose a scheme for implementing probabilistically a CNOT gate for
coherent state encoded qubits using an entangled four-mode state,
beam splitters and photon number counters.

Several proposals and experimental implementations of a
CNOT gate for single photon qubits have been done in the last
years [9,10]. Pittman et al. describe in [9] a quantum parity check
and a quantum encoder and show how they may be combined to
implement a CNOT gate using polarizing beam splitters and po-
larization single photon qubits. The experimental demonstration of
this gate can be found in [11]. It is described in [12] the operation
and tolerances of a nondeterministic, coincidence basis, quantum
CNOT gate for photonic qubits. The gate is constructed using lin-
ear optical elements and requires only a two-photon source for its
demonstration. Its success probability is 1/9.

An unambiguous experimental demonstration and comprehen-
sive characterization of quantum CNOT operation in an optical sys-
tem using four entangled Bell states as a function of only the input
qubits’ logical values, for a single operating condition of the gate,
is found in [13]. The gate is probabilistic, but with the addition of
linear optical quantum non-demolition measurements, it is equiv-
alent to the CNOT gate required for scalable all-optical quantum
computation.

In [14] it is reported an experimental demonstration of telepor-
tation of a CNOT gate assisted with linear optical manipulations,
photon entanglement produced from parametric down-conversion,
and postselection from the coincidence measurements. The average
fidelity for the teleported gate is 0.84. Zhao et al. detail in [10] a
proof-of-principle experimental demonstration of a nondestructive
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Fig. 1. Optical setup for performing the CNOT gate for coherent state qubits proba-
bilistically.

CNOT gate for two independent photons using only linear optical
elements in conjunction with single-photon sources and condi-
tional dynamics.

All the examples given above are probabilistic gates. A deter-
ministic CNOT is still not available due to the need of non-linear
operation [15,16]. Here we present a proposal for implementing
probabilistically a CNOT gate inspired by the scheme presented
in [9].

This Letter is outlined as follows: in Section 2 we present
the optical setup for a probabilistic CNOT gate for coherent state
encoded qubits; in Section 3 brings the analysis of success and
fidelity of the proposed CNOT gate; and, at last, we make our con-
cluding remarks in Section 4.

2. Optical setup for a probabilistic CNOT gate

We intend to perform a CNOT gate between the qubits |C〉 =
a|0〉 + b|1〉 and |T 〉 = c|0〉 + d|1〉, where |C〉 and |T 〉 are the
control and the target qubits, respectively. In a coherent state
quantum computer (CSQC), the qubit is encoded as |0〉L = |−α〉
and |1〉L = |α〉 where α is assumed to be real. In this case,
we have |〈0|1〉|2 = |〈−α|α〉|2 = exp(−4|α|2), which ensures the
orthogonality if α � 2 [3–6]. Thus, the states |C〉 and |T 〉 for
coherent state qubits are: |C〉 = Nc(a|−α〉 + b|α〉) and |T 〉 =
Nt(c|−α〉+d|α〉), where Nc = [1 + 2 · �(a∗b)exp(−2|α|2)]−1/2 and
Nt = [1 + 2 · �(c∗d)exp(−2|α|2)]−1/2 are normalization constants.

Schematic of the optical setup for our proposed CNOT gate
is showed in Fig. 1. The state |�〉 in Fig. 1 is an four-mode
state given by |�〉 = NΩ(|−α,−α,−α,−α〉 + |−α,−α,α,α〉 +
|α,α,α,−α〉+ |α,α,−α,α〉), where the normalization constant is

N� = 4[1 + exp(−4|α|2) + 2 · exp(−6|α|2)]−1/2
. This state can be

generated by the quantum circuit shown in Fig. 2 and can be im-
plemented nondeterministically from the optical scheme proposed
in [26]. The success probability of this scheme is 1/4.

In Fig. 1, BS, PS and C are beam splitters, phase shifters and
photon counters, respectively. The set of beam splitters and pho-
ton counters are used to perform Bell-state measurements [17,18].
The unitary operator of a lossless balanced beam splitter is B̂ =
exp[π(â1â†

2 + â†
1â2)/4]. If we send two coherent states |α〉1 and

|β〉2 through the BS, the total state at the output is given by:

B̂|α,β〉1,2 = ∣∣(α − β)/
√

2, (α + β)/
√

2
〉
1,2. (1)

The PS, by its turn, adds a phase θ to the signal passing through
it. Its unitary operator is Û (θ) = exp( jθ â†â), such that:

Û |α〉 = ∣∣e jθα
〉
. (2)

If θ = π , the PS is a NOT or X gate for a CSQC because if the light
entering the PS is a coherent state |α〉(|−α〉), the output state will
be |−α〉(|α〉).

Still referring to Fig. 1, mode 1 is the control qubit |C〉, mode 6
is the target qubit |T 〉 and modes 2 to 5 correspond to the auxil-
iary resource state |�〉. Before the photon counters, the state |ψ〉,
resulting from the evolution of the input state |C〉1 ⊗|�〉2−5 ⊗|T 〉6
through the optical setup, is given by:

|ψ〉 = N
[
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(|√2α,0,−α,−α,−√
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where N = Nc · N� · Nt . When the photon counter Cx registers nx

photons, we obtain one of the following states on modes 3 and 4:

|χ〉3,4 = 1,2,5,6〈0,n2,0,n4|ψ〉1−6

� ac(−1)n2+n4 |−α,−α〉 + ad(−1)n2 |−α,α〉
+ bc(−1)n4 |α,α〉 + bd|α,−α〉, (4)

|χ〉 = 〈n1,0,n3,0|ψ〉
� ac(−1)n1 |α,−α〉 + ad(−1)n1+n3 |α,α〉

+ bc|−α,α〉 + bd(−1)n3 |−α,−α〉, (5)

|χ〉 = 〈0,n2,n3,0|ψ〉
� ac(−1)n2 |−α,α〉 + ad(−1)n2+n3 |−α,−α〉

+ bc|α,−α〉 + bd(−1)n3 |α,α〉, (6)

|χ〉 = 〈n1,0,0,n4|ψ〉
� ac(−1)n1+n4 |α,α〉 + ad(−1)n1 |α,−α〉

+ bc(−1)n4 |−α,−α〉 + bd|−α,α〉. (7)

Fig. 2. Circuit to generate a four-partite entangled state |�〉 for single photon qubits.
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