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A new way to evaluate the spectral-correlation properties of thermal fields of solids is suggested.
The principal element here is the surface linear response function of an inhomogeneous electron
subsystem of solids. Along with straightforward calculations using the known response functions,
the suggested method allows calculating the response functions self-consistently based on the time
dependent density functional theory. The self-consistent calculation of the linear response function
followed by an application of the fluctuation–dissipation theorem yields spectral power densities of the
fluctuating electromagnetic fields.
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1. Introduction

Theory of fluctuating electromagnetic (FEM) fields of solids
is grounded on the Maxwell’s equations with the fluctuation–
dissipation theorem (FDT) [1–8]. The key point of this theory is to
solve the boundary-value problem of the phenomenological elec-
trodynamics. Knowledge of the Green’s tensor of the boundary-
value problem together with the FDT enables us to evaluate the
spectral and correlation properties of thermal fields of solids
[9–16]. It should be emphasized that in accordance with such for-
mulation of the problem, it is clear that the interface is simply
an abstract mathematical line between material domains. It is true
despite the local or nonlocal description of optical properties. At
the same time, an adequate calculation of subsurface physical and
chemical processes requires more detailed description of an inter-
face as some transition layer between materials with a variable
chemical and structural composition. Obviously, it can be achieved
only by quantum mechanical means. The interface transition layer
consists of the electron subsystem, the nuclear lattice (regular or
irregular) subsystem, and the regular and fluctuating electromag-
netic fields. Here we deal with thermally stimulated fluctuating
electromagnetic fields originating from charge fluctuations within
the material domain. It is well known that the near-field zone in
the heterogeneous system “solid–vacuum” is composed mostly by
so-called evanescent electromagnetic waves. The spectra of ther-
mal electromagnetic fields consist of series of resonances relating
to the surface electromagnetic waves (surface polaritons) within

* Tel.: +7 910 7934517; fax: +7 8312 675553.
E-mail address: Illarion1955@mail.ru.

the spectral ranges where such surface eigenstates can be ex-
cited.

It should be noted that the surface electromagnetic states play
an important role in different physical processes including van der
Waals interactions, heat transfer between the bodies at small dis-
tances, continuous growth of crystals, Raman-scattering, capture
of atoms, molecules, and coherent material states, photochemistry,
surface phenomena such as the adsorption and desorption, het-
erogeneous chemical catalysis, etc. In practice, surface polaritons
can be excited by laser radiation and by a beam of particles, or by
internal thermal fluctuations inside a body. Thermally excited elec-
tromagnetic fields within a body, which appear due to charge and
current fluctuations, partially reflect on the vacuum–sample inter-
face and return back to the body, and partially penetrate into a
vacuum region outside the body, where these waves form the elec-
tromagnetic background in the near- and far-field regimes. Proper-
ties of the propagating and evanescent electromagnetic fluctuating
fields are crucially different [9–16]. In the near field the energy
density can be much larger in magnitude than in the far field.
The matter is that the optical properties and sample geometry
have a strong influence on the characteristics of thermally excited
near fields. As a result, the noise spectra in the near-field region
differ essentially from the noise spectra in the far-field zone. More-
over, the coherence properties of thermal electromagnetic fluctua-
tions in a near field regime are extremely different from those of
the propagating waves. The above described results were obtained
within the framework of the electrodynamics of continuous me-
dia, which excludes a description of microprocesses at interatomic
distances.

Needless to say, that the phenomenological approach is valid
only at comparatively large distances from solids, at least larger
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than the interatomic distance in the sample lattice. Along with the
above, we have a different way to evaluate the spectral-correlation
properties of thermal fields of solids without use of the theory
developed in [1–8]. In addition to the complete description of ther-
mal fields it is possible to determine in detail the properties of
the interface transition layer which separates a bulk region from
the vacuum region. The principal foundation here is the static ver-
sion of the density functional theory (DFT) [17,18] for zero and
nonzero [19] temperatures, and the time dependent density func-
tional theory (TDDFT) [20–25]. TDDFT allows for calculating the
linear response function of an arbitrary inhomogeneous electron
system of solids. The application of the fluctuation–dissipation the-
orem then yields the spectral power densities of the charge and
current correlation functions. In the final step of this scenario, the
spectral-correlation properties of thermal fields of solids at any
distances (including those within the solids) will be calculated. It
should be noted that some microscopic models for the subsurface
region were discussed in [26–29], and general ideas how to cal-
culate field correlations near an interface can also be found, for
example in [30–32].

The Letter is organized as follows. In Section 2 we provide the-
oretical basis to calculate the spectral-correlation characteristics of
thermal fields using TDDFT. Analytical formulas in the hydrody-
namic approach for the spectral power densities of the compo-
nents of thermal fields in the particular case of a linear response
function for a half-space and corresponding illustrations are pre-
sented in Section 3, Subsection 3.1. Numerical results for distance
dependence of the spectral power densities of thermal fields in
case of the self-consistent approach including comparison to the
phenomenological approach are demonstrated in Section 3, Sub-
section 3.2. Our conclusions are given in Section 4. Finally, in ap-
pendixes we provide some accepted definitions and details of the
self-consistent solution of the Kohn–Sham system of equations.

2. Formalism

Here, we formulate the problem of calculating the spectral-
correlation tensors of thermal fields via the linear response func-
tions of spatially inhomogeneous systems. Phenomenological the-
ory adequately describes the fluctuating electromagnetic fields at
comparatively large distances from the surface of a body. That is
why we restrict our consideration to the subsurface domains at
distances much smaller than typical wavelengths of thermal spec-
tra of solids. Thus, we consider the quasistationary (evanescent)
fields. In general, the heated body of interest has an arbitrary form
and volume V . The sources of thermal fields are the fluctuating
charges ρ(�r, t) and currents �j(�r, t) within this volume. The formu-
las for the field’s components are as follows

Ei(�r, t) = −
∫
V

d3r′ ρ
(�r′, t

) ∂

∂xi

1

|�r −�r′| ,

Hi(�r, t) = 1

c

∫
V

d3r′ eik�

∂

∂xk
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|�r −�r′| , (1)

where eik� is the totally antisymmetric unit pseudotensor of a third
rank. Corresponding symmetrized correlation tensors of thermal
fields are obtained by composing the components from Eqs. (1),
for example,
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Writing the symmetrized functions in Eq. (3) in the following form
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we have for the spectral power densities

g(E)

ik (�r1,�r2;ω) =
∫ ∫
V

d3r′ d3r′′(ρ(�r′)ρ(�r′′))
ω

× ∂

∂xi

1

|�r1 −�r′|
∂

∂xk

1

|�r2 −�r′′| , (6)

g(H)

ik (�r1,�r2;ω) = 1

c2

∫ ∫
V

d3r′ d3r′′ eis�ekmn
(

j�
(�r′) jn

(�r′′))
ω

× ∂

∂xs

1

|�r1 −�r′|
∂

∂xm

1

|�r2 −�r′′| , (7)

g(H E)

ik (�r1,�r2;ω) = −1

c

∫ ∫
V

d3r′ d3r′′eis�

× ∂

∂xs

( j�(�r′)ρ(�r′′))ω
|�r1 −�r′|

∂

∂xk

1

|�r2 −�r′′| , (8)

where (ρ(�r′)ρ(�r′′))ω , ( j�(�r′) jn(�r′′))ω and ( j�(�r′)ρ(�r′′))ω are the
symmetrized spectral power densities for the fluctuating charges,
currents and crossed characteristics, see Appendix A. Then, taking
into account FDT from Eq. (A.5) corresponding to charge fluctu-
ations (ρ(�r′)ρ(�r′′))ω = h̄ Coth(h̄ω/2kB T ) Im{χ(�r′,�r′′;ω)}, it directly
follows from Eq. (6), for instance, the spectral power density of
electric fluctuations

g(E)
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where the linear response function χ(�r′,�r′′;ω), in its turn, is de-
fined by the following relation between the induced charge ρind
and external potential φext

ρind(�r,ω) =
∫
V

d3r′ χ
(�r,�r′;ω)

φext
(�r′,ω

)
. (10)

The main part of the proposed method of calculation of the
spectral and correlation properties of thermal fields of solids is
concerned with the time dependent density functional theory
[20–25]. In a framework of this method the linear response of an
arbitrary spatially bounded system of volume V is a solution of
the integral equation

χ
(�r′,�r′′;ω) = χ0(�r′,�r′′;ω)

+
∫ ∫
V

d3r1 d3r2 χ0(�r′,�r1;ω
)
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, (11)
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