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The diffusion of particles in confining walls forming a tube is discussed. Such a transport phenomenon is
observed in biological cells and porous media. We consider the case in which the tube is winding with
curvature and torsion, and the thickness of the tube is sufficiently small compared with its curvature
radius. We discuss how geometrical quantities appear in a quasi-one-dimensional diffusion equation.
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1. Introduction

To control the transportation of micro- and nanoparticles arti-
ficially, it is very important to understand the diffusion properties
under the confining walls. These phenomena are encountered in
biological cells [1] and zeolite [2], and in catalytic reactions in
porous media [3]. For this purpose, the diffusion properties in con-
fined geometries are discussed by several authors. The diffusion
in a membrane with a certain thickness is discussed by Gov [4],
Gambin et al. [5], and Ogawa [6]. The diffusion in general curved
manifold is discussed by Castro-Villarreal [7]. The diffusion in a
tube with a varying cross section along the axis (channel model)
is discussed by Jacobs [8], Yanagida [9], Zwanzig [10], Reguera and
Rubi [11], and Kalinary and Percus [12], and as a review, see Bu-
rada et al. [13]. Surprisingly, this channel model is related to the
reaction rate theory due to the Smoluchowski equation [13,14].

In this Letter, we discuss the case in which a tube has a fixed
cross section but is winding with geometrical properties, namely,
curvature and torsion. Then, we show that the diffusion in such
a tube with a Neumann boundary condition can be expressed by
a quasi-one-dimensional diffusion equation with an effective dif-
fusion coefficient that depends on curvature. This is carried out by
integrating a three-dimensional diffusion equation in the cross sec-
tion of the tube. The coefficient depends on the curvature of the
central line of the tube. The physical interpretation of its curvature
dependence is given by analogy to Ohm’s law.

By using the obtained equation, we show the mean square dis-
placement (MSD) of torus and helix tubes where the curvature is
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constant. When the curvature depends on position, we show the
short time expansion for MSD.

In Section 2, we introduce the curvilinear coordinates and re-
lated metrics in a winding tube. This is carried out by using
Frenet–Seret (FS) equations explained in Appendix A. In Section 3,
we define the quasi-one-dimensional diffusion field. In Section 4,
the diffusion equation is obtained by using a local equilibrium con-
dition. This condition is an assumption that the diffusion in the
same cross section is completed in a short time, which is much
smaller than our observed time scale; thus, we may assume that
the density is flat on the same cross section. In Section 5, we dis-
cuss the diffusion equation beyond the local equilibrium condition.
In Section 6, we calculate MSD from the quasi-one-dimensional
diffusion equation and show first two terms in the short time ex-
pansion by using curvature and its derivatives. In Section 7, the
conclusion is given.

2. Metric in tube

We consider the quasi-one-dimensional diffusion equation as
the limitation process from a three-dimensional usual diffusion
equation in a thin tube with a circular cross section. We set the
curved tube with the radius ε in the three-dimensional Euclidean
space R3. The curvilinear coordinates that specify the points in the
tube and their bases we use hereafter are as follows (see Fig. 1).

�X is the Cartesian coordinate in R3. s (= q1) is the length pa-
rameter along the center line of the tube and �e1 is its tangential
vector. �x(s) is the Cartesian coordinate that specifies the points
on the center line. qi is the coordinate in the transversal direc-
tion �ei , the small Latin indices i, j,k, . . . run from 2 to 3 and the
Greek indices μ,ν, . . . run from 1 to 3. We sometimes use the
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Fig. 1. Local orthogonal coordinates {s,q2,q3} in tube.

notations s = q1, v = q2 = r cos θ , and w = q3 = r sin θ to obtain
simpler expressions, and we define the area element of the cross
section dσ = dv dw = r dr dθ . �e1, �e2, and �e3 are the unit basis vec-
tors introduced by the Frenet–Seret equations [15,16] explained in
Appendix A. Then, we identify any points in the tube using

�X(
s,q2,q3) = �x(s) + qi�ei(s), (1)

where 0 � |�q| � ε with |�q| = √
(q2)2 + (q3)2.

From this relation, we obtain the curvilinear coordinate system
in the tube (⊂ R3) using the coordinate qμ = (q1,q2,q3) and met-
ric Gμν :

Gμν = ∂ �X
∂qμ

· ∂ �X
∂qν

. (2)

Gμν is calculated by using the Frenet–Seret equations (Ap-
pendix A):

Gμν =
⎛
⎝

1 − 2κv + (κ2 + τ 2)v2 + τ 2 w2 −τ w τ v

−τ w 1 0

τ v 0 1

⎞
⎠ , (3)

where κ is the curvature and τ is the torsion defined in
Appendix A. We have nonzero off-diagonal elements due to the
existence of torsion. The determinant of the metric tensor does
not depend on torsion:

G ≡ det(Gμν) = (1 − κv)2. (4)

The inverse metric is given as

Gμν = 1

(1 − κv)2

×
⎛
⎝

1 τ w −τ v

τ w (1 − κv)2 + (τ w)2 −τ 2 v w

−τ v −τ 2 v w (1 − κv)2 + (τ v)2

⎞
⎠ .

(5)

3. Diffusion field in tube

Let us define a three-dimensional diffusion field by φ(3) and
a three-dimensional Laplace–Beltrami operator with metric tensor
(3) by 
̂. Then, we obtain the diffusion equation with a normal-
ization condition:

∂φ(3)

∂t
= D
̂φ(3), (6)

N =
∫

φ(3)
(
q1,q2,q3)√G d3q, (7)

where D is the diffusion constant, G ≡ det(Gμν), and N is the
number of particles. Our aim is to construct the effective one-
dimensional diffusion equation from the 3D equation above in a
small radius limit:

∂φ(1)

∂t
= D
̂(eff )φ(1), (8)

N =
∫

φ(1)(s)ds, (9)

where φ(1) is the one-dimensional diffusion field and 
̂(eff ) is the
unknown effective 1D diffusion operator that might not be equal
to the simple 1D Laplace–Beltrami operator ∂2/∂s2.

From two normalization conditions, namely, (7) and (9), we ob-
tain

N =
∫

φ(3)
(
q1,q2,q3)√G d3q

=
∫ [∫

dq2dq3(φ(3)
√

G
)]

ds

=
∫

φ(1)(s)ds.

The particle number between s and s + ds should be equal in the
two fields. Thus, we obtain

φ(1)(s) =
∫

φ(3)
√

G dq2 dq3. (10)

We multiply
√

G by Eq. (6) and integrate it by q2 and q3 to
obtain

∂φ(1)

∂t
= D

∫
(
√

G
̂)φ(3) dq2 dq3. (11)

From the form of the Laplace–Beltrami operator


 = G−1/2 ∂

∂qμ
G1/2Gμν ∂

∂qν
,

our diffusion equation has the form

∂φ(1)

∂t
= D

∫
∂

∂qμ
G1/2Gμν ∂

∂qν
φ(3) dσ

= D
∂

∂s

∫
1√
G

(
∂

∂s
− τ

∂

∂θ

)
φ(3) dσ , (12)

where the Neumann boundary condition is used at the second
equality. The torsion appears only when the axial symmetry of φ(3)

is broken as is expected from the definition.

4. Local equilibrium condition

The fluctuation mode in the cross section decreases with time
like exp(−Dt/ε2), and only the zero mode (uniform in the same
cross section) survives at t � ε2/D , i.e. the equilibrium is realized
in the transverse direction in a short time. Then we suppose the
“local equilibrium condition” as

∂φ(3)

∂qi
= 0, i = 2,3. (13)

This condition works out for straight tube or flat sheet with
width ε evidently. But it is not so clear in the case with large cur-
vature. In this sense it is still a hypothesis at this stage to use (13),
however, we come back to this problem in the next section and
we have a consistent result.

In the following we restrict our observation in the time scale
t satisfying t � ε2/D and we assume the local equilibrium condi-
tion (13). Note that this condition includes the Neumann condition
at the boundary of the tube.

From Eqs. (10) and (13), we also obtain

φ(3) = φ(1)

σ
, σ ≡

∫ √
G dσ = πε2. (14)
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