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We study the outcomes in a general measurement with postselection, and derive upper bounds for the
pointer readings in weak measurement. The probabilities inferred from weak measurements change along
with the coupling strength; and the true probabilities can be obtained when the coupling is strong
enough. By calculating the information gain of the measuring device about which path the particles
pass through, we show that the “negative probabilities” only emerge for cases when the information
gain is little due to very weak coupling between the measuring device and the particles. When the
coupling strength increases, we can unambiguously determine whether a particle passes through a given
path every time, hence the average shifts always represent true probabilities, and the strange “negatives
probabilities” disappear.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Weak measurement, a quantum measurement process with
preselection and postselection, was introduced by Aharonov
et al. [1]. In a weak measurement, the expectation value of a
quantum operator can lay outside the range of the observable’s
eigenvalues, and this has been confirmed in the field of quantum
optics [2]. For very weak interaction between the measuring de-
vice and the quantum system, with appropriate initial and final
states, the value of the meter’s reading can be much larger than
that obtained in the traditional quantum measurement, this can
be viewed as an amplification effect. This effect has been used
to implement high-precision measurements, a tiny spin Hall ef-
fect of light has been observed by Hosten and Kwiat [3]; small
transverse deflections and frequency changes of optical beams
have been amplified significantly [4]. Because of its importance
in applications, there has been much work on weak measurement
[5–21].

Besides its usefulness in measuring small signals, weak mea-
surement is also used extensively to analyze the foundational
questions of quantum mechanics. Weak measurement provides
a new perspective to the famous Hardy’s paradox [22], and
the predictions by Aharonov et al. [23] have been realized in
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experiments [24]. Using the idea of weak measurement, Lun-
deen et al. [27] have directly measured the transverse spa-
tial quantum wave function of photons, and Kocsis et al. [28]
have observed the average trajectories of single photons in a
two-slit interferometer which could not be accomplished in tra-
ditional quantum measurements. As commented by Cho [29],
weird weak measurements are opening new vistas in quantum
physics.

In this Letter we study the outcomes of the pointer read-
ings and derive the upper bounds in a weak measurement, we
apply weak measurement to analyze Hardy’s paradox and dis-
cuss when the “negative probabilities” (observed in [24]) emerge.
Just as negative kinetic energy [25] and superluminal group ve-
locities [26], observable negative probabilities seem confusing. In
fact, the “negative probabilities” in Hardy’s gedanken experiment
are not true probabilities. The “negative probabilities” just indi-
cate that the pointer’s average shifts has an opposite sign from
what is expected with the presence of positive number of par-
ticles, hence the “negative probabilities” just indicate a negative
effect, actually. In the literature [30], it has been obtained that
the effect of signal amplification via weak measurement only exist
for the cases when the interaction between the measuring device
and the quantum system is very weak. Do the “negative prob-
abilities” only exist in the case of very weak interactions, just
as does the amplification effect? How can one view the emer-
gence of the “negative probabilities” from an information theo-
retical perspective? We shall discuss these questions in this Let-
ter.
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2. The range of the pointer’s shifts in weak measurement

To perform a weak measurement of an observable A, we need
four steps. First, we prepare the quantum systems to be measured
in the initial state |ψi〉. Second, let the quantum systems interact
weakly with a measuring device. Third, we perform a strong mea-
surement and select the quantum systems in the final state |ψ f 〉.
Finally, we record the readings of the measuring device condi-
tioned on successfully obtaining the final state |ψ f 〉 of the system.
The weak value was introduced by Aharonov et al. [1]

Aw = 〈ψ f |A|ψi〉
〈ψ f |ψi〉 , (1)

which can be written as Aw = a + ib (with a,b ∈ R). The interac-
tion Hamiltonian is generally modeled as

H = gδ(t − t0)A ⊗ p, (2)

where g is the coupling strength with g � 0 and p is the pointer
momentum conjugate to the position coordinate q. We assume
that A is dimensionless and we use the natural unit h̄ = 1.
Jozsa [6] has given the final average shifts of pointer position and
momentum

δq = 〈q〉′ − 〈q〉 = ga + gb · 〈{p,q}〉,
δp = 〈p〉′ − 〈p〉 = 2gb · Varp . (3)

Here 〈ô〉 denotes the expectation value of an observable ô of the
device in its initial state, and 〈ô〉′ with a prime denotes the corre-
sponding value in the final state of the device after the interaction
and postselection. Varp = (�p)2 (Varq = (�q)2) denotes the vari-
ance of the pointer momentum (position) in the initial pointer
state, and {p,q} = pq + qp denotes the anti-commutator.

When one chooses appropriate initial and final states of the
system such that 〈ψ f |ψi〉 → 0, both the real and imaginary parts
of the weak values can become arbitrarily large, and one might
think that the average shifts of the pointer’s position and momen-
tum could become arbitrarily large as well, according to Eq. (3).
However, in order to obtain Eq. (3), approximations are used and
only the first-order terms of g are kept; the approximations as
well as Eq. (3) are no longer valid when 〈ψ f |ψi〉 → 0. It was
pointed out in [31] that the average pointer shifts may have an
upper bound, and this observation was also confirmed in [30,32].
For the case when a qubit system weakly interacts with a pointer
that was initially in a Gaussian state, it is shown in [30] that the
maximum average pointer shift δq (δp) over all possible pre- and
post-selections (PPS) are bounded from above by the standard de-
viation �q (�p) of the pointer variable in the initial state, i.e.,
max{δq}��q and max{δp}� �p. In the following, we shall show
that these upper bounds still hold for the more general cases.

Wu and Li proposed a more general and precise framework
of weak measurement by retaining the second-order terms of the
coupling strength g [31]. When the initial pointer state ρd satis-
fies 〈p〉 = 0 and 〈q〉 = 0 (these conditions can be always satisfied
by choosing a suitable “zero point”) and the variance of p is not
changing with time, the expressions of the average shifts in q and
p are obtained as

δq = g Re 〈A〉w

1 + g2 Varp(〈A〉1,1
w − Re 〈A2〉w)

, (4)

δp = 2g Im 〈A〉w Varp

1 + g2 Varp(〈A〉1,1
w − Re 〈A2〉w)

, (5)

where

〈A〉w = tr(Π f Aρs)

tr(Π f ρs)
, 〈A〉1,1

w = tr(Π f AρsA)

tr(Π f ρs)
, (6)

here ρs is the initial state of the system (preselection), and Π f is
a general postselection that could be a projection onto a final pure
state or a subspace.

When the coupling strength is very weak, i.e., g�p 	 1, we
search for the maximum shifts of the measuring device using the
expressions in Eqs. (4) and (5). The absolute value of the shift δq

|δq|� g|〈A〉w |
|1 + (g�p)2(〈A〉1,1

w − Re 〈A2〉w)| . (7)

If the observable A is a projective operator which satisfies A2 = A,
we have

|δq|� g|〈A〉w |
|1 + (g�p)2(〈A〉1,1

w − Re Aw)| . (8)

First we prove 〈A〉1,1
w � |〈A〉w |2. Let C = 〈A〉1,1

w − |〈A〉w |2, we
have

C = tr(Π f AρsA) tr(Π f ρs) − tr(Π f Aρs) tr(ρsAΠ f )

(tr(Π f ρs))2
. (9)

The spectral decomposition of the operators ρs and Π f can be
written as

ρs =
∑

i

pi|ψi〉〈ψi|, Π f =
∑

j

q j|φ j〉〈φ j|, (10)

where
∑

i pi = 1, pi � 0, and q j = 0 or 1 since Π f is a projective
operator. The numerator of Eq. (9) is

F =
(∑

i j

piq j
∣∣〈ψi |A|φ j〉

∣∣2
)(∑

mk

pmqk
∣∣〈ψm|φk〉

∣∣2
)

−
∣∣∣∣
(∑

i j

piq j〈ψi|A|φ j〉〈φ j|ψi〉
)∣∣∣∣

2

. (11)

We construct two vectors

|a〉 =
∑

i j

√
piq j〈ψi|A|φ j〉|i, j〉,

|b〉 =
∑

i j

√
piq j〈ψi|φ j〉|i, j〉, (12)

where {|i, j〉} is a orthonormal basis satisfying 〈i, j|i′, j′〉 = δii′δ j j′ .
So Eq. (11) can be rewritten as

F = 〈a|a〉〈b|b〉 − ∣∣〈a|b〉∣∣2
. (13)

From Schwarz inequality we have F � 0, equality holds when |a〉
is proportional to |b〉. The denominator of Eq. (9) is positive, so we
have

〈A〉1,1
w �

∣∣〈A〉w

∣∣2
. (14)

In particular, when PPS are all pure states, equality holds.
As g�p � 1, let K = 1 + (g�p)2(〈A〉1,1

w − Re Aw), and from
Eq. (14) we have

K � 1 + (g�p)2(|Aw |2 − |Aw |)
�

(
1 − 1

2
g�p|Aw |

)2

+ 3

4

(
g�p|Aw |)2

� 0. (15)

From Eqs. (8) and (15), we obtain
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