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A hyperbolic model is presented which generalises Aoki's parabolic system for the combined propagation
of a mutant gene together with a cultural innovation. It is shown that this model allows for the
propagation of a shock wave and the shock amplitude is calculated numerically. Particular attention is
paid to the case where the shock moves into a region where the frequencies of the mutant gene and of
the individuals adopting the innovation are zero.
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1. Introduction

In an inspiring piece of work Jordan [20] developed a complete
analysis for the evolutionary behaviour of a shock wave for a hy-
perbolic version of the Fisher equation
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where p(x, t) is a density with v, y and ps positive constants. This
equation was proposed by Fisher [13] as a model for the spread
of an advantageous gene, and was simultaneously discovered and
analysed by Kolmogoroff et al. [22]. In fact Jordan [20] and Jordan
and Puri [21] refer to Eq. (1) as the Fisher-KPP equation. As Jordan
[20] points out Eq. (1) has been studied in various contexts in the
biological, physical and social sciences.

Jordan [20], in fact, uses Green and Naghdi [15] thermodynam-
ics (cf. also Jaisaardsuetrong and Straughan [18]) to argue that in
many situations Eq. (1) ought to be replaced by a pair of equations
which convert it to a hyperbolic system, namely

ap aq p
- _Z 1—=),
at 8x+yp< Ps

d d
Mo _y2P 2)
ot 0x

where V is a constant which turns out to be the shock speed and
q is a flux. It has been noted recently that many diffusion problems
ought really to be represented by hyperbolic systems, in the spirit
of (2). For example, Herrera and Falcén [16] argue this for a type of
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thermosolutal convection in a stellar zone, Jordan [19] eloquently
argues for this in traffic flow, Mendez and Camacho [23] show that
it is useful in population dynamics, and several other applications
are described in detail in Christov and Jordan [9], Christov and Jor-
dan [10-12], and in chapter 9 of the monograph by Straughan
[29], including nanoscale heat transport, fish migration, propaga-
tion of the hantavirus, chemotaxis, skin burns, and radio frequency
heating in a medical context. A key to this development is the real-
isation that in many real life processes the relaxation time involved
is not necessarily small and disturbances propagate with a finite
speed. Relatively large relaxation times have been observed in bi-
ological tissues by Mitra et al. [24], and by Saidane et al. [27]. It is
worth mentioning that while Jordan [20] uses Green and Naghdi
[15] thermodynamics to derive a hyperbolic version of Eq. (1) one
could employ a derivation along the lines of Cattaneo [7]. The work
of Cattaneo [7] is described in detail in Section 1.2 in Straughan
[29], where he also notes that a Cattaneo-like derivation was de-
veloped earlier by Graffi [14], although for a dielectric rather than
in the context of heat transport. The key aspect of the work of
Jordan [20], is that he is able to obtain analytically a solution for
the amplitude of a shock solution to (2), and, therefore, completely
understand the shock behaviour. Such a solution is not possible in
typical mechanics contexts such as in gas dynamics, or elasticity,
cf. Whitham [30], unless one is analysing some linearised form and
is investigating a weak shock.

While Eq. (1) is proposed for the evolution of an advanta-
geous gene, the recent anthropological literature usually links the
theory for the evolution of a gene to that of the evolution of a
cultural trait. Riede and Bentley [26] note that, ... “the wave of
advance model was originally developed by Fisher [13] to represent
the spread of advantageous genes ... it provides mathematically de-
tailed predictions about demographic spread over time, with equations
that unambiguously characterise the hypothesised migratory activity”.
O'Brien and Bentley [25] write, ... “theoretical modelling of cultural
transmission is based on the premise that genes and culture provide sep-
arate, though linked, systems of inheritance, variation, and evolutionary
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change”. The fact that genes and culture are intimately linked is
further emphasised by Bentley and O’Brien [2] who write, ... “itis
becoming increasingly clear that the interactions of genes and culture -
literally, their coevolution - offer a faster and stronger mode of human
evolution than either does by itself”. They also write that, ... “gene-
culture theory is a branch of theoretical population genetics that incor-
porates cultural traits into models of differential transmission of genes
from one generation to the next”, and they further write, ... “the two
inheritance systems cannot always be treated independently”. Further
evidence for linking cultural and gene evolution is provided by
Bentley et al. [5], Bentley and Ormerod [4], Bentley and O’Brien [3],
Bentley et al. [6], and the many references therein. In fact, Aoki [1]
developed a partial differential equation model for the propaga-
tion of a mutant gene and a cultural innovation. He derives what
he calls a logistic attraction-repulsion model, in terms of y(x,t),
the frequency of the mutant gene, and p(x, t), the frequency of the
individuals adopting the innovation (frequency in this case refers
to the number of genes or individuals, normalised in an appropri-
ate way). Aoki’s [1] system of equations is
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where y,0,68 and p are constants, and x € R. It should be noted
that Egs. (3) are non-dimensionalised so the diffusion coefficient is
1 and y and p lie in [0, 1].

Our goal is to propose and analyse a hyperbolic generalisation
of system (3) and derive a coupled nonlinear system of ordinary
differential equations for the shock amplitudes appropriate to y
and p. We then solve this system numerically and are able to fully
analyse the shock behaviour. We believe this is the first time a
complete analysis has been performed for such a system.

2. The model and shock waves

In this work we adopt a hyperbolic form of the Aoki model (3)
by using a Cattaneo [7] type of argument to replace Egs. (3) by
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where 7 > 0 is a relaxation time, and J and K are fluxes for y and
p, respectively. Let us observe that Egs. (4) reduce to the standard
problem of Aoki [1] when T = 0. We restrict attention to the sit-
uation when J and K in (4) have the same relaxation time. This
gives rise to a shock where the mutant gene and the individuals
may propagate simultaneously.

Let S be a singular surface for Eqgs. (4), it is actually a sin-
gular point when x is in one dimension, or it may be thought
of as a plane wave in three space dimensions, moving along the
x-axis. Suppose y(x,t) and p(x,t) are C? everywhere except across
S where they may suffer a finite discontinuity. Define y™~ and
pt . by

y~ = lim yx,0), y"= lim yx0),
x—=S— x—St

p~ = lim p(x,t), p*= lim px0),
x-S~ x—S+

where the limits at S and S~ denote limits from the right and
the left, respectively. We define the shock amplitudes Y and P by

YO =[yl=y"—y~, P®=I[pl=pT—p~, (5)

where the notation for the jump [-] in a function is introduced.
From Egs. (4) one may derive the Rankine-Hugoniot equations
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cf. Whitham [30], lesan and Scalia [17]. Thus, from Egs. (6) one
shows that the shock speed V is constant and given by

VZi=—_. (7)
T

(We stress that the diffusion coefficient is really involved in V.
Eq. (7) arises because of Aoki's [1] non-dimensionalisation which
transforms time and space. Aoki’s [1] Egs. (3) are derived from a
discrete system. In his derivation the diffusion coefficient which
arises is k = m(Ax)2/2At where /2 is the probability of emi-
gration to the left and to the right colony in a discrete model of
the individuals where Ax is the distance between neighbouring
colonies and At is the time taken for migration. The non-dimen-
sionalisation used to remove k is involved and analyses three cases
depending on the various parameters which arise. Due to this
non-dimensionalisation we believe adopting the same value of t
in (4) is acceptable.)

Singular surface theory is covered in depth in Chen [8], and
conveniently in chapter 4 of Straughan [29]. From this theory the
Hadamard relation shows that
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i [yel + VIl

where y; and yyx denote partial derivatives, where §/§t is the
derivative at the wavefront, and where V is the shock speed. We
also require the relation for the jump of a product, namely,

[ab] = a*[b] +b*[a] — [a] [b]. 9
We commence by taking the jump of Eqs. (4)12 to find us-
ing (8),
8
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and
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Now form (10) 4+ V(11) and make repeated use of (9). One then
repeats the same procedure for (4)34. After some calculation one
may arrive at the following system of equations for Y and P,
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