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The model of fractal continuum accounting the topological, metric, and dynamic properties of deformable
physical fractal medium is suggested. The kinematics of fractal continuum deformation is developed. The
corresponding geometric interpretations are provided. The concept of stresses in the fractal continuum is
defined. The conservation of linear and angular momentums is established. The mapping of mechanical
problems for physical fractal media into the corresponding problems for fractal continuum is discussed.
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1. Introduction

Most natural and engineering materials are inherently hetero-
geneous due to the presence of microstructure [1]. In the past
two decades it was recognized that microstructures of real het-
erogeneous materials frequently possess formidably complicated
architecture characterized by statistical scale invariance over many
length scales [1–7]. For such materials the classical approximation
of homogeneous Euclidean continuum is inapplicable, because the
heterogeneities play an important role on almost all scales. At the
same time, the fractal geometry offers helpful scaling concepts to
characterize and model the scale invariant structures of heteroge-
neous media [1–30].

While there is no canonical definition of fractals, mathemati-
cally a fractal is commonly viewed as an object the metric dimen-
sion of which D (e.g., Hausdorff, Minkowski, self-similarity, etc.)
is larger than its topological dimension d [2], except of special
cases such as the Hilbert space-filling curves with D = d [31]. It
is obvious that fractals with d � D < n cannot continuously fill
the embedding Euclidean space En . Consequently, the properties of
fractal structures are essentially discontinuous non-differentiable
functions of the Euclidean coordinates in En [32]. Accordingly, to
deal with fractal materials, it was suggested the concept of frac-
tal continuum [33] the overall properties of which are defined
as the analytic envelopes of non-analytic functions characterizing
the fractal ΦD

n ⊂ En under study [32–45]. In this way, the frac-
tal continuum Φn

D ⊂ En can be defined as n-dimensional region
of En equipped with appropriate fractional metric, measure, and
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vector differential calculus, such that its properties (density, dis-
placements, velocities, etc.) are describable by the continuous (or,
at worst, piecewise continuous) differentiable functions of space
and time variables [42,43]. It should be emphasized that in con-
trast to fractals, the topological dimension of fractal continuum
Φn

D ⊂ En is, per definition, equal to the dimension of the embed-
ding Euclidean space, that is dFC = n > D . This immediately implies
that the density of admissible states in Φn

D ⊂ En should be scale
dependent [44,45].

Although the measure of fractal continuum can be fixed by a
natural requirement that the mass of any region W ⊂ Φ3

D of char-
acteristic size L should display the same scaling behavior as the
fractal medium under study, that is M(W ) ∝ LD [33], there are
very different ways to define the metric and fractional calculus in
the fractal continuum. Accordingly, quite different models of fractal
continua were suggested to aboard the problems of mechanics and
electrodynamics in fractal media [33–46]. These different models
lead to quite different solutions of the same problems for the
modeled fractal medium. Nonetheless that the strength of fractal
continuum models can be ranked by its abilities to explain and
predict the results of experimental studies, the mathematical and
physical self-consistency of the model should be assured before its
applications to a specific problem.

The mechanics of deformable medium cannot be deduced from
the laws of mechanics of material points and rigid bodies. Hence,
additional assumptions are needed to introduced, such that new
notions of internal and external forces, stresses, and the equi-
librium equation should emerge. In this context, the mechanical
behavior of fractal media has topological and geometrical aspects
which should be accounted within the fractal continuum frame-
work. The fractal (mass or metric) dimension D characterizes how
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the extensive (e.g. mass) and intensive (e.g. density, ρ ∝ Ln−D )
properties of heterogeneous medium scale with system size in
E3, but it tells us nothing about the connectivity and topological
properties of the fractal, such that fractals of different topology
and connectivity can have the same mass (metric) dimension [11].
Therefore, to account the fractal topology of medium one needs to
endow the fractal continuum model Φn

D ⊂ En with additional ap-
propriate dimensional numbers.

In this Letter, we suggest the model of deformable fractal con-
tinuum accounting the topology and metric of fractal material. The
model is used to develop the fractal continuum mechanics of het-
erogeneous materials with scale-invariant (micro-)structures.

2. Fractal continuum ds
α Φ3

D ⊂ E3

Although, in mathematics, fractals can be defined without any
reference to the embedding space [47], in real life fractal materials
reside in the three-dimensional space and occupy a well-defined
volume V 3 in E3. Accordingly, the scaling properties of fractal
pattern ΦD

3 ⊂ E3 can be characterized by a set of fractional di-
mensionalities [16]. Most definitions of dimension numbers are
based on the concept of fractal covering by balls (cubes, tubes,
etc.) of some size ε, or at most ε. In mathematics these covers
are considered in the limit ε → 0. At the same time, it was noted
that, in many cases, the number of n-dimensional coats need to
cover the mathematical fractal of linear size L in E3 scales as
N ∝ (L/ε)D . It is precisely this power-law behavior gives rise to use
the powerful tools of fractal geometry to deal with physical pat-
terns ΦD

3 ⊂ E3 exhibiting statistical scale invariance only within a
wide, but bounded interval of length scale ξ0 < ε � L < ξC , where
ξ0 and ξC are the lower and upper cut-offs of the physical ori-
gin [48]. Hence, strictly speaking, physical fractals are closer to the
concept of pre-fractals obtained after finite number of iterations,
whereas the true fractal can be obtained in the limit of infinite
number of iterations (ε → 0 while ξ0 = 0).

To model the fractal medium within a continuum frame-
work, in this work we define three-dimensional fractal contin-
uum ds

α Φ3
D ⊂ E3 as three-dimensional region of the embedding

Euclidean space E3 filled with continuous matter and endowed
with appropriate fractional measure, metric, and norm, as well as
a set of rules for integro-differential calculus and a proper Lapla-
cian accounting the metric, connectivity and topological properties
of the modeled fractal medium.

2.1. The measure of fractal continuum

Since the fractal continuum has topological dimension
dFC = 3 > D we can use the conventional rules of Lebesgue in-
tegration in E3, whereas the fractal measure can be accounted via
the definition of scale dependent density of admissible states c3(x)
in Φ3

D ⊂ E3. In this way, the mass of any cubic (or spherical) region
W ⊂ Φ3

D of the characteristic size L is assumed to scale as

M(W ) =
∫

W ∈ΦD
3

ρ0 dV F =
∫

W ∈E3

ρcc3(xi)dV 3
(
xi ∈ E3)

=
∫

W ∈Φ3
D

ρc dV D = m0

(
L

ξ0

)D

, (1)

where dV F , dV 3 and dV D are the infinitesimal volume elements
in the fractal medium ΦD

3 , Euclidean space E3, and fractal contin-
uum Φ3

D , respectively, xi are the Cartesian coordinates in E3 (see
Fig. 1), ξ0 is the characteristic size of elemental Euclidean compo-
nents of mass m0 and mass density ρ0 from which the physical

Fig. 1. Mapping of essentially discontinuous Menger sponge ΦD
3 ⊂ E3 (d f = d� =

D = ln 20/ ln 3) into the fractal continuum ds
α Φ3

D ⊂ E3 with D = ln 20/ ln 3, D S =
ln 8/ ln 3, and ζ = ln 2.5/ ln 3 < α = d�/3 = ln 20/ ln 27.

fractal medium is made, ρc is the density of fractal continuum
(for example, in the case of porous fractal medium ρc = (1 −φ)ρ0,
while φ is the total porosity). Notice that ξ0 > 0 accounts the pre-
fractal nature of physical fractal medium and so the corresponding
fractal continuum should obey the scaling property (1) for L > ξ0
only.

To account the topological properties of fractal medium, we
noted that the connectivity and topology of the fractal ΦD

3 ⊂ E3

can be specified by the chemical dimension d� and the fractal
dimensions D(i)

S of intersections between the fractal and the Carte-
sian planes in the embedding Euclidean space E3 [42]. The chem-
ical dimension quantifies how the “elementary” structural units of
the (pre-)fractal structure are “glued” together to form the en-
tire fractal object [16]. So, d� tells us “how many directions” the
observer feels in the configuration space by making static measure-
ments. Therefore, d� determines the minimal number of indepen-
dent coordinates needs to define the point position in the fractal,
in the same way as the topological dimension d determines the
number of independent coordinates (e.g. the Cartesian coordinates)
in the Euclidean manifold. Hence, the number of mutually orthog-
onal independent coordinates which can be defined in the fractal
with d� < 3 is less than 3. Although one can speak about the frac-
tional number of coordinates [49], in a fractal with 2 � d� < 3 it is
more convenient to define two fractional coordinates χi,Ai ∈ Φ3

D ,
such that the infinitesimal volume elements in Φ3

D ⊂ E3 can be
decomposed as

dV D = dχi(xi)dAi(x j �=i), (2)

where dAi is the infinitesimal area element on the intersection be-
tween Φ3

D ⊂ E3 and the Cartesian plane (x j, xk) ∈ E3 having the

fractal dimension D(i)
S , while dχi is the infinitesimal length ele-

ment along the lines parallel to the Cartesian axis i �= j,k normal
to the Cartesian plane (x j, xk). Accordingly, dV D can be decom-
posed

dV D = dχζ dAD = c(1)
1 dx1 c(1)

2 dA(1)
2 = c(2)

1 dx2 c(2)
2 dA(2)

2

= c(3)
1 dx3 c(3)

2 dA(3)
2 = c3 dV 3 (3)

where dA(i)
2 denote the infinitesimal area elements on two-

dimensional Cartesian planes and c(i)
2 (x j �=i) is the density of ad-

missible states on the intersection between Φ3
D and the Cartesian

plane normal to the i-axis, while c(i)
1 (xi) is the density of admissi-

ble states along lines parallel to the i-axis (see Fig. 1). From Eq. (3)
immediately follows that

c3(xk) = c(i)
1 (xi)c(i)

2 (x j �=i), (4)

but the functional form of c3(xk) can be defined in the unique
way as c3 = c(1)

1 (x1)c(2)
1 (x2)c(3)

1 (x3), if and only if d� = 3, such
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