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Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence
in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling
approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that
mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike
transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the
synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory
inputs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As is well known, neurons communicate with each other
through synapses and the process called synaptic transmission.
Synaptic transmission is an essentially probabilistic process due
to the random neurotransmitter release of the synaptic vesicles.
At some synapses the stochastic nature of synaptic communica-
tion may give rise to highly unreliable transmission which has
been confirmed by well-designed biological experiments [1–8]. For
example, in the cortex, it is found that the probability of neuro-
transmitter release in response to a single spike can be as low
as 0.1 or lower, indicating that as many as 90% out of all arriv-
ing presynaptic inputs fail to evoke a postsynaptic response [4].
Moreover, some recent theoretical studies have also suggested that
the transmission unreliability might be a part of the neural com-
putation in the brain and possibly have significant implications in
information processing [8–15].

On the other hand, in the past decades, noise in neurons has
attracted more and more attention due to its potential facilitating
effects on information processing in nervous system. Researchers
especially paid close attention to stochastic resonance (SR) mecha-
nism whereby generally feeble input information can be amplified
and optimized by the assistance of noise [16–22]. More precisely,
when the noise level is small, the neurons are not able to de-
tect the signal due to its small amplitude, but as the noise raises,
the temporal output becomes highly correlated with the signal
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resulting an increase in signal to noise ratio. Finally, for very large
noise intensities, the neuronal output is dominated by the noise
and the signal cannot be detected. Such an input–output rela-
tionship of neurons exhibits a well-known bell-shaped structure
as a function of noise intensity. Besides the noise, information
transmission delays among neurons are crucial for the SR in neu-
ral systems. In [23,24], it has been identified that the synaptic
transmission delays lead to emergence of multiple stochastic res-
onance peaks in networks of neurons, indicating that noise and
information transmission delays can play complementary roles in
warranting optimal detection of weak signals. In contrast to SR,
recent studies have concentrated on an inhibitory effect of noise
in rhythmically firing neurons [25–30], that is, there exists a pro-
nounced minimum in the firing rate as the noise level increases.
Such an inhibition effect of noise has also been demonstrated ex-
perimentally in squid giant axon operating as a pacemaker [31].
Since the dependency of neuronal response on noise is reverse
of that in SR mechanism, this new phenomenon is called inverse
stochastic resonance (ISR). In most previous modeling studies on
ISR, noise has been generally considered an external additive noisy
current source appearing in the membrane potential equation, and
assumed to be originated from the cumulative effect of overall
noise sources. However, such an approximation in noise model-
ing is lack of mimicking the actual biophysical conditions and does
not provide us a clear understanding the phenomenon with con-
crete biological mechanisms.

Due to the large number of synaptic contacts in in vivo con-
ditions, neurons are exposed to intense and random incoming
excitatory and inhibitory spike inputs. Based on the experimen-
tal findings from electrophysiological studies [32–35], this synaptic
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background activity is widely accepted to be the major source of
noise in neurons. It is thus necessary to carry out further stud-
ies by considering the realistic models of synaptic noise to clar-
ify the underlying biophysical mechanisms which give rise to ISR.
In this work, we investigate the ISR by using a detailed model-
ing approach for the synaptic background activity with unreliable
synapses. We mainly examine influence of synaptic unreliability as
well as other important some background activity parameters, such
as the synaptic input regime, presynaptic firing rate and coupling
strength on the occurrence of ISR.

2. Mathematical model and setup

The system under study consists of a postsynaptic neuron
which receives uncorrelated network activity from a finite number
of excitatory and inhibitory neurons. The time evolution of mem-
brane potential of the postsynaptic neuron is modeled based on
the second-order Morris–Lecar (ML) equations as follows [36,37]:

C
dv

dt
= −gCam∞(v)(v − V Ca) − gK w(v − V K) − gL(v − V L)

+ Iapp + Isyn(t) (1a)

dw

dt
= φ

w∞(V ) − w

τw(V )
(1b)

where v and w represent the membrane voltage and the activation
of delayed-rectifier K+ current, respectively. C is the membrane
capacity per unit area and φ is a constant that determines scal-
ing rate for K+ channel opening. The parameters gx (x = Ca,K, L)

are the maximal conductance of calcium, potassium and leakage
channels, respectively. V Ca, V K and V L denote the corresponding
equilibrium potentials. The parameters m∞ and w∞ stand for the
fraction of open calcium and potassium channels at steady state,
respectively; and they are given by the following equations:

m∞(V ) = 0.5

[
1 + tanh

(
v − V 1

V 2

)]
(2a)

w∞(V ) = 0.5

[
1 + tanh

(
v − V 3

V 4

)]
(2b)

with a time constant for the activation of potassium channels:

τw(V ) = 0.5

[
cosh

(
v − V 3

2V 4

)]−1

(2c)

where V 1 and V 3 are the activation midpoint potentials at which
the corresponding currents are half activated; V 2 and V 4 denote
the slope factors of the activation. Finally, Iapp is an external cur-
rent stimulus in μA/cm2. Notably, ML neuronal model can demon-
strate two different types of neuronal excitability (i.e. class I and
class II excitability) when the model variables are set appropriately.
Here, following the previous computational studies on ISR [25–30],
we consider the class II excitability and set the ML model pa-
rameters as: C = 20 μF/cm2, gL = 2.0 μS/cm2, gCa = 4.4 μS/cm2,
gK = 8.0 μS/cm2, V K = −84 mV, V L = −60 mV, V Ca = 120 mV,
V 1 = −1.2 mV, V 2 = 18 mV, V 3 = 2 mV, V 4 = 30 mV and
φ = 0.04.

Finally, in Eq. (1a), Isyn is the total synaptic current introduced
into the neuron due to the network activity. We assume that the
model neuron receives a large number of excitatory and inhibitory
spike inputs from totally N presynaptic neurons. The ratio of ex-
citatory to inhibitory synaptic contacts is taken as NE : Ni = 4 : 1
to ensure physiological values found in in-vivo conditions [38,39].
By considering the presynaptic neurons as a group that generates
independent Poisson spike trains with the same input firing rate
f in , the total synaptic current reaching the soma of the postsynap-
tic neuron is given by:

Isyn(t) = wexc

[
Ne∑

k=1

∑
l

hl
kδ

(
t − tl

k

) − K
Ni∑

m=1

∑
n

hn
mδ

(
t − tn

m

)]
(3)

where wexc represents the coupling strength for the excitatory
synapses and K is the relative strength between inhibitory and
excitatory synapses. tl

k is the discharge time of the l-th spike at
the excitatory presynaptic neuron k, and hl

k is the synaptic trans-
mission reliability parameter of this spike which is used to mimic
whether the spike transmission is successful or not. Similarly, tn

m is
the discharge time of the n-th spike at the inhibitory presynaptic
neuron m, and hn

m is the synaptic transmission reliability parame-
ter. The reliability of spike transmission is modeled based on the
stochastic Bernoulli on–off process by assuming hl

k = 1 or hn
m = 1

with probability ps , and hl
k = 0 or hn

m = 0 with probability 1 − ps ,
where ps is defined as the successful transmission probability of
spikes [10,18,40–42].

3. Results and discussions

We systematically analyze the ISR phenomenon in a single neu-
ron subjected to a synaptic background activity, and discuss the
relative contributions of different synaptic subunits on such a phe-
nomenon. In the results presented below, the total number of
input synapses is set N = 5000. Because it is a slow varying param-
eter compared with other system parameters, we do not change
its value. Following the procedure in [25–28], the temporal out-
put of the neuron is recorded for T = 20 000 ms (after eliminating
1000 ms time interval as transient), and then the mean firing rate
is calculated by counting the number of spikes and dividing it by
the recording interval T . For statistical accuracy, the entire pro-
cedure is repeated 1000 times with random initial conditions of
(v0, w0), and we finally compute the mean firing rate as the mea-
sure of ISR.

As a starting point, we first consider the balanced state of exci-
tatory and inhibitory synaptic inputs, and investigate whether the
ISR can be induced in this special regime by the synaptic back-
ground activity with unreliable synapses. To do so, we set the
system parameters as K = 4, wexc = 0.05, f in = 32 Hz, and com-
pute the mean firing rate as a function of successful transmission
probability ps for several typical values of the applied current Iapp .
Fig. 1 features the obtained results. As seen in Fig. 1, with decreas-
ing values of ps (right to left), all the mean firing rate curves drop
at first until reaching some minimum and then begin to rise, ex-
cept Iapp = 88, and finally attain to some saturated values. It is also
seen that the minimum in mean firing rates occur at some corre-
sponding optimal ps , indicating that appropriate tuning of synaptic
reliability can suppress the spiking activity even in the presence
of suprathreshold input current Iapp . This is a clear signature of
synaptic transmission reliability induced ISR. Furthermore, it is ev-
ident that ISR can significantly be modulated by Iapp: inhibition
effect of synaptic transmission reliability on neuronal firing tends
to disappear as Iapp increases.

The underlying effects of ps and Iapp on the occurrence of
synaptic reliability induced ISR can be understood by consider-
ing the dynamical structure of the model neuron. The bifurcation
diagram in Fig. 2 shows that the deterministic ML model equa-
tions may exhibit different solutions as Iapp varies. Namely, when
Iapp < 88.29 = I1, there is only a stable equilibrium, generally
known as “stable fixed point (SFP)”, corresponding to the resting
state of the membrane potential. At I1, a saddle node bifurcation
gives rise to occurrence of stable and unstable limit cycles. Notably,
the stable limit cycle (SLC) corresponds to regular spiking behavior
of the neuron. With further increase in Iapp , although the SLC does
not change very much, the unstable limit cycle (ULC) collapses
onto the SFP at I2 = 93.86 through a subcritical Hopf bifurcation.
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