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Doubly-localised breather solutions of the nonlinear Schrodinger equation (NLS) are considered to be
appropriate models to describe rogue waves in water waves as well as in other nonlinear dispersive
media such as fibre optics. Within the hierarchy of this type of formations, the Peregrine breather (PB) is
the lowest-order rational solution. Higher-order solutions of this kind may be understood as a nonlinear
superposition of fundamental Peregrine solutions. These superpositions are nontrivial and admit only a
fixed well prescribed number of elementary breathers in each higher-order solution. Here, we report first

observation of second-order solution which in reality is a triplet of rogue waves.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

Rogue waves is the subject of intense discussions in the water
wave community [1-4] as well as in other fields of physics. Well
accepted physical explanation for the sudden formation of high
amplitude waves on the surface of water is modulational instability
(MI) [5,6]. In the approximation of deep-water waves, the MI pro-
vides a condition for extreme localisation both in time and space
thus creating the waves which appear from nowhere and disappear
without a trace. This happens due to the instability that starts from
a regular nonlinear Stokes wave train. In the narrow spectrum ap-
proximation, the MI can be studied within the framework of the
focusing NLS [7,8]. This is a weakly-nonlinear evolution equation
describing the propagation in time and space of wave trains in
deep-water. In scaled form, it can be written as:

iy + ¥xx + 2[Y Py =0, (1)

where i is the complex amplitude, T is time in the frame moving
with the group velocity and X is the normalised spatial coordi-
nate. Note that the NLS used here is different from the one in [9].
Namely, the T-variable is multiplied by 2. Thus, the solution given
below has different scaling along the T-axis.

The MI phenomenon can be described using the exact solutions
of the NLS [1]. Recent experiments on the PB [10] which is an
exact solution of the NLS localised in space and time have been
observed in several media [11-14]. These experiments confirmed
the validity of breather dynamics in optics, in water waves and in
plasma, respectively. Higher-order solutions are also of great inter-
est as their effect can be much more powerful than of a single PB.
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Generally, the doubly-localised formations comprise a hierarchy
of solutions of increasing order with the lowest-order one being
the PB. The higher-order solutions contain several PBs. The inter-
esting point is that the number or PBs M do not coincide with the
order of the solution n. Their number in the superposition is higher
than n and can be expressed as M = n(n + 1)/2. Thus, for the
second-order solution the number of PBs is 3, for the third-order
solution, the number of PBs is 6, etc. One of the main conclusions
from this result is that there is no solution with nonlinear super-
position of two PBs. If higher than one, their number has to be 3
or 6. In this work, we demonstrate, experimentally, the existence
of rogue wave triplets with 3 PBs in it.

Another remarkable property of higher-order rogue wave solu-
tions is that they are arranged in special geometrical forms. PBs in
triplets are strictly located at the apexes of the equilateral triangle
in the (X, 2T)-plane. The size and orientation of the triangle are
controlled by two real parameters of the solution. Thus, when ob-
serving the solution either in space or time, we can see the PBs at
special distances from each other.

To be specific, each exact expression for the hierarchy of
doubly-localised rational solutions can be written in terms of poly-
nomials Gp(X, T), Hy(X, T) and Dy(X, T):

Gn(X,T)+iHp(X, T)
Dn(X,T)

Un(X,T) = ((—1)" + ) exp(2iT), (2)

where n € N denotes the order of the solution. It is important
to point out that all these solutions v, (X, T) tend to the scaled
uniform second-order Stokes wave exp(2iT) as the spatial X and
the time T coordinates tend to infinity. In the case of the lowest
first-order solution (n = 1) represented by the PB [10], these poly-
nomials are defined as
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Fig. 1. Rogue wave triplet solution of the NLS v, (a) for 8 =50, y = —50 and (b) for
B =-50, y =50.

Gi=4, H;=16T and D{(X,T)=1+4X?+16T>.

If we ignore the trivial scaling parameter and translations along X
and T variables, the solution is fixed.

On the other hand, the second-order solution v, that describes
rogue wave triplet dynamics [9] comprises a two-parameter family.
It is defined by:

Gy =12[3 — 16X* — 24X?(16T% + 1)

— 48X —80(2T)* —72(2T)* + 8y T], (3)
Ha =24[2T (15 — 16X* + 24X* — 48X)

—8(4X% +1)(2T)* — 16(2T)°]

+24(y (8T* —2X* - 0.5)), (4)
Dy = 64X° + 48X*(16T% + 1) + 12X>(3 — 16T%)?

+64(2T)5 +432(2T)* +396(2T)> +9

+ B[B +4X(12(2T)? — 4X* + 3) ]

+y[y +8T(12X* — 16T - 9)], (5)

where the two free real parameters 8, ¥ € R describe the orienta-
tion and the size of the triplet on the (X, 2T)-plane. As mentioned
above, the first-order components of the triplet form an equilateral
triangle in this plane centred at the origin. Each side of this tri-
angle is given by an approximate expression ~ /3(8% + y2)1/6/2
which provides an estimate of the size of the whole structure in
space-time. When 8 = 0, the maximum of one of the components
is located on the T-axis either on positive or negative side of it
depending on the sign of y. Two other components then appear
at the other half-plane with maxima located at equal T-values. If
B # 0, the structure rotates around the origin by 6 = —% arctan(g)
relative to the above position. In particular case, when g = —y,
the angle of rotation is 77 /12, i.e. 15°. In this case, the three com-
ponents are separated both in time and in space. We should keep
in mind that only positions of the components rotate. The orien-
tation of each individual component on (X, 2T )-plane remains un-
changed. Initial conditions in the experiment were defined by the
above equations with large negative X and the values of 8§ = —y
sufficient for their complete separation. The value of |X| is basi-
cally limited by the length of the tank.

Fig. 1 shows two examples of a rogue wave triplet when the pa-
rameters are chosen to be g =50, y = —50 and 8 = —50, y =50,
respectively. The two choices provide the same size of the triangle
but correspond to different orientations. This can be clearly seen

from Fig. 1. When the two parameters are zero, § =0 and y =0,
the solution focuses at the origin with strong localisation at X =0
and T =0 [15] which amplifies the carrier by a remarkably high
factor of five. This solution (dubbed super-rogue wave) has been
observed up to now only in water waves [16,4]. Similar higher-
order cluster solutions are described in [17-19].

In order to perform the experiments, the two-parameter-
dependent second-order rational solution has to be written in
dimensional units in order to satisfy the dimensional deep-water
wave NLS [8]:

dA dA 92A  wok?
(22 20 070) @088 0% 424 =0, 6)
at  2ko 9x 8k3 9x? 2
For this purpose we apply the transformations [1]:
wo wo 2
T=——t  X=Xx———t, =2I2A, 7
52 T ; (7)

to Eq. (1). The wave frequency wo and the wavenumber ko are
connected by the dispersion relation wy = ,/gkg, where g =
9.81 ms—2 denotes the gravitational acceleration.

To second order in steepness, the surface elevation n(x,t) is
related to the breather solution A(x,t) as follows:

n(x, t) =Re(A(x, t) exp[i(kox — wot)])
+ %koAZ(x, t) exp[2i(kox — wot)]. (8)

This formula is used to determine the initial flap motion as well as
for comparing the experimental results with theory. Experiments
have been conducted in the facility, described earlier in [16]. In
order to determine the initial condition for the triplet solution,
provided by theory, it is sufficient to fix three parameters in the
surface elevation expression (8), related to the second-order so-
lution in dimensional units, i.e. A(x,t) = ¥ (x,t). These are the
amplitude ag, the steepness &g := agko of carrier and the starting
spatial co-ordinate, Xipitia1, Of the wave evolution.

The single-flap motion at the starting side of the tank generates
exact initial condition provided by the NLS theory. In particular, we
used the breather triplet solution given by Egs. (3)-(5). The com-
puterised equipment takes into account the response function of
the wave generating paddle which is described in [20]. The major
difficulty of the experiment with the second-order triplet solution
is that it requires long propagation distances. These are longer than
the actual length of the tank which is a significant limitation. To
overcome this difficulty the experiment can be done in sequences.
Namely, the tank’s length can be effectively increased by record-
ing a signal measured at a specific position from the paddle in
the first part of the sequence and regenerating the measured wave
profile in the second part of the sequence. Repeating this proce-
dure with sufficiently high accuracy, the flume’s length can be ex-
tended several times. To ensure the accuracy, it is crucial to avoid
wave reflections. The measured signals should be undisturbed as
much as possible. In order to reach the required high accuracy, the
measuring wave gauge is placed 9 m from the single paddle be-
ing separated by 3 m from the installed beach. At this distance,
the reflections are barely noticeable for the chosen carrier param-
eters.

The first set of experiments has been conducted for a carrier
amplitude of ap = 0.5 cm and a steepness value of g9 = 0.08,
thus, the wavenumber and wave frequency are kg = 16 radm™!
and wy = 12.52 rads~!, respectively. The parameter values of the
triplet are 8 =50 and y = —50 while the initial co-ordinate is
Xinitial = —30 m. These parameters have been chosen in order to
start the experiments with small amplitude amplification and to
avoid wave breaking, which may result from the extreme steep-
ening of the waves during the evolution [21]. Fig. 2 shows the
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