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A general model for phenomenological transport in phase transition is derived, which extends Jäckle
and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to
including interfacial energy to account for the presence of interfaces, we introduce viscosity and
relaxation contributions, which result from incorporating memory effect into the driving potential. Our
simulation results show that even without interfacial energy term, the viscous term can lead to transient
diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation
mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and
interfacial energy, we find that if the former dominates, then the concentration difference across the
phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Phase transitions in materials have long been observed, yet gen-
eral models which describe the interfaces evolution in both time
and space during transition are still developing. Currently, two
main modelling approaches can be found in literature. The first,
based on the sharp interface approach, is called the Stefan model
[1] and it tracks the evolution of interface explicitly by solving a
coupled multi-physics problem, which usually encompasses both
energy and mass balance. However, this approach has the draw-
back that its numerical implementation is complex. The second
approach is called the phase field method [2], and it connects
the behavior of the interfaces between phases fundamental ther-
modynamics. This method has been extensively used in applied
physics to explain microstructure evolution [3,4]. In this context,
Cahn–Hilliard equation and the Allen–Cahn equation are common
in literature; they are both based on a diffuse interface approach
[5–7], that is, interfacial energy is included in the total free energy
by taking into account the square of the concentration gradient
norm. While this approach has become quite standard, there are
other effects that may lead to a diffuse interface. A plausible al-
ternative points to the memory [8] and time relaxation of the
chemical driving potentials. Numerous articles on this topic have
appeared in the literature. For example, early work conducted by
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Crank [9] revealed that the diffusion coefficient of small molecules
diffusing into polymer is history-dependent. In the 1980s, Jäckle
and Frisch [10,11] showed that a time relaxation can be derived
from a time convolution of chemical potential. Motivated by this
insight, we postulate that in a diffusion-controlled system the con-
stitutive laws of transport should also exhibit memory and we
derive a general model that explains how memory could impact
phase transition and how the Cahn–Hilliard interfacial energy in-
terplays with path dependent contributions.

2. Theory

We start by taking the Cahn–Hilliard equation in the following
form [12]:

∂u

∂t
= ∇2(Φ(u) − κ∇2u

)
(1)

where u is the dimensionless concentration, a quantity obtained
by dividing the concentration by its maximum value, and Φ(u) is a
driving potential. As a consequence of interfacial energy, the over-
all driving potential becomes Φ(u) − κ∇2u, where the coefficient
κ is a positive number, tuning the contribution to the aforemen-
tioned interfacial energy.

To connect the current driving potential of the system to its his-
tory, we follow the work by Jäkle and Frisch [10] and suppose that
a generalized driving potential exists and satisfies the following re-
lation:

Ξ
(
u(t,x)

) = Φ
(
u(t,x)

) − κ∇2u(t,x)
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Table 1
List of the physical properties.

Symbol Physical property

u Normalized concentration
Φ(u) Driving potential
Ψ (u) Auxiliary potential
μ(u) Homogeneous chemical potential in the regular solution model
Ξ(u) Generalized driving potential
ε Viscosity parameter
κ Intefacial energy coefficient
τ Relaxation time
g Interaction parameter in the regular solution model
T Injection period

+
t∫

−∞
θ(t − s)

∂

∂s

(
Ψ

(
u(s,x)

) − Φ
(
u(s,x)

))
ds (2)

The memory effect emerges from a convolution between an aux-
iliary potential Ψ (u) and the time relaxation function θ(t). In
the remainder of the Letter, the function θ(t) is taken from the
Maxwell–Debye model [13], i.e., θ(t) = e−t/τ .

We substitute the terms inside the outer Laplacian of Eq. (1)
with the new driving term Ξ(u) of Eq. (2). After taking the time
derivative and subsequent algebraic manipulation, we obtain the
following [13] expression:

τ
∂2u

∂t2
+ ∂u

∂t

= ∇2(Φ(u) − κ∇2u
) + τ∇2

(
∂Ψ (u)

∂t
− κ∇2 ∂u

∂t

)
(3)

The auxiliary potential Ψ (u) is taken it to be linear with respect
to u, i.e., Ψ (u) = ε

τ u, where ε � 0.1 If we substitute Ψ (u) back into
Eq. (3) and neglect the term of order τκ [13,14] then we obtain
the following PDE:

τ
∂2u

∂t2
+ ∂u

∂t
= ∇2Φ(u) − κ∇4u + ε∇2 ∂u

∂t
(4)

We note that the first term τ ∂2u
∂t2 on the left-hand side of Eq. (4)

corresponds to Cattaneo’s correction to Fick’s Law [15]. This term
was originally derived as a phenomenological relaxation effect of
the concentration flux. The second term on the left-hand side
−κ∇4u is the classical Cahn–Hilliard diffuse interface contribu-
tion. The last term, ε∇2 ∂u

∂t , which we shall refer to as viscosity
contribution, can also be found in fluid flow [16] and heat transfer
models [17].

To capture phase transition behavior, we choose the potential
Φ(u) to be a nonmonotonic cubic function [18]. In the remainder
of the Letter we assume that the driving potential Φ(u) is a func-
tion derived from regular solution theory of the following form
[19,20]:

Φ(u) = u + 1

2
gu2 − 1

3
gu3 (5)

where, g is the interaction parameter in the regular solution
model. In Eq. (5) we note that Φ(u) is non-monotonic only if
g < −4. The homogeneous chemical potential μ(u) = log u

1−u +
g(u − 1

2 ) is obtained from the regular solution model [19] and it
corresponds to the driving potential Φ(u) given above. Lastly, we
point to Table 1 for a list of the quantities that are used in this
work.

1 In the expression for Ψ (u) ε is divided by τ in order to simplify the later no-
tation.

Fig. 1. Spacial distribution of the normalized concentration u during the injecting
half-cycle for T = 100, κ = 0, τ = 0 and g = −4.2.

3. Result and discussion

First, we consider the 1D version of Eq. (4) with τ → 0 and
κ = 0

∂u

∂t
= ∂2

∂x2
Φ(u) + ε

∂2

∂x2

∂

∂t
u (6)

The domain under study spans from x = 0 to x = 1, where x = 1
denotes the surface where the reaction takes place. We set the ini-
tial condition to be u(x, t = 0) = u0; at the boundary the flux is
equal to 0 at x = 0 and to a function j(t) at x = 1, i.e., − ∂

∂x Φ(u) −
ε ∂

∂x
∂
∂t u = j(t), where − j(t) = Aπ

T sin(2π t
T ). The flux will directly

affect the average concentration of the system uavg = ∫ 1
0 u(t, x)dx.

In fact, the average concentration within half a period is inde-
pendent of the period length, since A = − ∫ T /2

0 j(t)dt . Although
the boundary flux condition is unusual in the Cahn–Hilliard lit-
erature, we can find several technologically-relevant applications.
For example, in the lithium-ion batteries, phase transitions occur
within the electrode particles and the process can be modeled
by a shrinking-core model coupled with electrochemical reactions
that occur at the electrode-electrolyte interface [21,22]. Those re-
actions allow for lithium to be stored within the material and the
corresponding flux of lithium ion may be given by the boundary
condition above. While the sinusoidal form greatly simplifies this
electrochemical problems, it is still relevant since many practical
electrochemical excitations are sinusoidal in nature such as al-
ternating current AC voltammetry and electrochemical impedance
spectroscopy.

We start all simulations from u0 = 0.1 and choose A = 0.8,
meaning that the average concentration uavg in the sample varies
sinusoidally from 10% to 90%. In Fig. 1 we show the local con-
centration evolution in the injection half period with T = 100,
g = −4.2 and for ε = 5 × 10−2,10−2,5 × 10−3,10−3.

The phase change is characterized by the presence of regions
of significantly different concentrations and by a sharp transition
between them. We find that due to the boundary inward flux, the
region near x = 1 changes phase first during the injection phase,
i.e., 0 � t � T /2. And at later times the diffuse interface travels
towards x = 0 as shown in Fig. 1. According to Fig. 1, the sharp
interface is smoothed out when ε increases, stating that the pres-
ence of ε impedes backward diffusion, which is characterized by

Deff = ∂Φ
∂u < 0 and would occur for g−√

g2+4g
2g < u <

g+√
g2+4g

2g , and
in addition it ensures the problem is physically feasible. The limit
with ε → 0+ leads to a sharp interface [23], as we can deduce
from the figure.

We can also track the homogeneous chemical potential μ(t, x =
1) at the surface. This is a quantity of interest in areas such as
battery research because it can be linked directly to measurable
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