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The geometric phase of a central qubit coupling to the surrounding XY chain in a transverse field at finite
temperature is studied in this Letter. An explicit analytical expression of the geometric phase for coupled
qubit is obtained in the weak coupling limit when the surrounding spin chain is in a thermal equilibrium
state. It is shown that the GP displays dramatic change around the quantum phase transition points of
the spin chain at zero and a finite range of temperature by numerical analysis. The result reveals that the
GP can be used as a tool to detect QPT when the spin chain system is at finite temperature.
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1. Introduction

A system can retain the information of its motion when it un-
dergoes a cyclic evolution, in the form of geometric phases (GPs).
It was first put forward by Pancharatnam in optics [1] and later
studied explicitly by Berry in a general quantum system [2]. Since
then, numerous generalizations have included nonadiabatic [3,4],
noncyclic [4,5] and nonunitary [6,7] evolution, also for degenerate
states [8]. Such a phase factor for the eigenstate depends only on
the swept solid angle by the parameter vector in the parameter
space, it may be less affected by uncontrolled fluctuations. There-
fore, it can be utilized to implement geometric quantum compu-
tation (GQC) which is resilient to stochastic control errors [9–11].
However, because of the real situation, it is natural to extend the
concept of GP from closed quantum systems to open quantum sys-
tems. Uhlman [6,7] first studied this issue as a purely mathemati-
cal problem. Then, based on the experimental context of quantum
interferometry, Sjöqvist et al. [12] introduced a definition of GP
for mixed states undergoing unitary evolution. In Ref. [13], Tong
and coworkers developed a kinematic approach to the GP for open
quantum systems in nonunitary evolution led by the coupling of
environment.

Recently, the close relation between the geometric phase and
quantum phase transitions (QPTs) in many body systems has been
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revealed [14–17]. Carollo and Pachos [14] showed that the geo-
metric phase is much sensitive to control parameters of spin chain
and can be used to detect the critical points of the spin chain. It
is also shown that the connection of GPs with the typical features
of QPTs such as the scaling feature, critical exponents and so on is
not restricted to the XY spin chain model but universal to quantum
many-body systems [15]. Yi and Wang [16] investigated the geo-
metric phase induced in an auxiliary qubit by a one-dimensional
XY spin chain and found that the GP changes sharply around the
QPT point and tends to zero far from the critical points. Zhang
et al. [17] studied the geometric phase of a qubit coupled to a XY
spin chain with three-spin interaction and revealed the GP may be
a tool to detect multi-spin interaction in a spin chain.

QPTs theoretically occur at absolute zero temperature (T = 0)
due to abrupt changes in the qualitative properties of the ground
state. At T = 0 there are no thermal fluctuations, QPTs are caused
only by quantum fluctuations. By properly tuning the Hamilto-
nian parameter, such as an external magnetic field or a coupling
constant, one can reach a special point, i.e., the critical point
(CP), where the ground state of the system undergoes a dramatic
change. QPTs strongly affect the macroscopic properties of the sys-
tem. Some well-known examples of QPTs are the paramagnetic–
ferromagnetic transition in some metals [18], the superconductor-
transition [19], and superfluid–Mott insulator transition [20].

However, due to the third law of thermodynamics, it is difficult
to achieve the absolute zero in practice, at this time thermal ef-
fects should be inevitable. Therefore, it is necessary to investigate
the quantum system’s property when both the quantum fluctua-
tions and thermal fluctuations exist. In recent years, the influence
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of thermal effects on the quantum system’s property in spin chains
has been extensively investigated [21–23]. Zanardi et al. [22] have
extended to finite temperature fidelity approach to quantum phase
transitions and found mixed-state fidelity can indicate well QPTs
at a finite temperature. Sadiek et al. [23] considered an infinite
one-dimensional anisotropic XY spin chain with a nearest-neighbor
time-dependent Heisenberg coupling J (t) between the spins in
presence of a time-dependent magnetic h(t) at zero and finite tem-
peratures, and found that the time evolution of entanglement in
the system shows nonergodic and critical behavior.

In previous investigations, they have been shown that GPs of a
qubit coupled to a spin chain change sharply around the critical
points (CPs) of the spin chain and may be used to signal the criti-
cal points. Therefore, GPs are expected as a tool to detect QPTs of
a many-body system [14–17]. In this Letter we are going to extend
the geometric phase approach to finite temperature. We will con-
sider a central qubit weakly coupled to a spin environment via a
Heisenberg XY interaction. Our purpose is to investigate the ge-
ometric phase property of the qubit coupled to the spin chain,
which is initially in the thermal equilibrium state, and expect the
GP of the coupled qubit can indicate QPTs in a finite range of tem-
perature. According to the definition of GP given by Ref. [13], we
provide an explicit analytical expression of the geometric phase
for the coupled qubit in the weak coupling limit. Our results show
that the variation of the GP of the coupled qubit can well indicate
the critical point phenomena in a finite range of temperature.

This Letter is organized as follows. In Section 2, the model
under consideration is presented. In Section 3, an analytical ex-
pression of the GP is obtained in the weak coupling limit and the
effect of the temperature on the GP is investigated. Finally, a short
summary of the present investigations is given in Section 4.

2. Model

We consider a central qubit σ z
S transversely coupled to a spin

environment via a Heisenberg XY interaction, and a transverse
magnetic field is homogeneously applied to each spin of the chain.
The qubit has a ground state |g〉 and a first excited state |e〉. We
assume that there is no energy exchange between the qubit and
the spin chain, the Hamiltonian of the whole system may read as
follows (taking h̄ = 1 in the whole Letter):

H = H S + H E + HSE, (1)

where

H S = ω

2
σ z

S , (2)

is the unperturbed Hamiltonian for the qubit,

H E = −
L∑

l=1

(
1 + γ

2
σ x

l σ x
l+1 + 1 − γ

2
σ

y
l σ

y
l+1 + λσ z

l

)
, (3)

is the Hamiltonian of the transverse field XY spin chain, and

HSE = −σ z
S ⊗ g

L∑
l=1

σ z
l , (4)

is the interaction between the qubit and the environment. Here
ω is the transition frequency between the ground state and the
excited state of the central qubit, γ characterizes the anisotropy in
the next-neighbor spin–spin interaction, λ and g are the transverse
magnetic field strength and the coupling constant of the qubit to
the spin chain, respectively. In above, σ z

S = |e〉〈e| − |g〉〈g| and σα
l

(α = x, y, z) are the Pauli matrices for spin at the lth site of the
spin chain, and L is the size of the spin chain. The anisotropy XY

spin chain model contains the two special cases: for 0 < γ � 1
it turns into a transverse Ising universality class XY spin chain,
and it has a critical point at |λc| = 1; for γ = 0 it reduces to a
transverse XX spin chain, which is critical for |λ| � 1. For the XY
chain there exists a periodic boundary condition, i.e., σ1 = σL+1.
Here, we ignore the boundary terms [16].

After a transformation (U−1
0 HU0 − iU−1

0
dU0
dt ), where U0 =

exp(−i ω
2 σ z

S t) is the free evolution operator, we can remove the
free-motion term of the central qubit in the Hamiltonian (1). Since
[H S , HSE] = 0, an operator-valued parameter λi = λ+ gσ z

S is a con-
versed quantity. Thus, λi can be treated as a c number. Obviously,
λi has two eigenvalues: λi = λ + (−1)i g (i = 0,1). In terms of the
basis of the qubit, the Hamiltonian (1) can be rewritten as

H =
∑

i=0,1

|i〉〈i| ⊗ H E,λi . (5)

Let us diagonalize the Hamiltonian H E + HSE . We follow the
procedure presented in Ref. [24] by defining the conventional
Jordan–Wigner (JW) transformation

σ x
l =

∏
n<l

(
1 − 2c+

n cn
)(

cl + c+
l

)
, (6)

σ
y

l = −i
∏
n<l

(
1 − 2c+

n cn
)(

cl − c+
l

)
, (7)

σ z
l = 1 − 2c+

l cl, (8)

which maps spins to one-dimensional spinless fermions with cre-
ation (annihilation) operators c+

l (cl), the Hamiltonian can be writ-
ten into the form

H E,λi =
L∑

l=1

[(
c+

l cl+1 + c+
l+1cl

) + γ
(
c+

l c+
l+1 + cl+1cl

)
+ λi

(
1 − 2c+

l cl
)]

. (9)

Next we introduce Fourier transforms of the fermionic operators

described by dk = 1√
L

∑
l cle

−i2π lk
L with k = −L/2,−L/2 + 1, . . . ,

L/2 − 1, the Hamiltonian Eq. (9) can be written in terms of the
new fermionic operator dk , d+

k as

H E,λi =
∑

k

[
2(cosk − λi)d

+
k dk + iγ sin k

(
d+

k d+
−k − d−kdk

)]
. (10)

And then using the Bogoliubov transformation by

bk,λi = cos
θk,λi

2
dk − i sin

θk,λi

2
d+

−k, (11)

with

θk,λi = arctan
γ sin 2πk

L

λi − cos 2πk
L

, (12)

the Hamiltonian (10) can be diagonalized

H E,λi =
∑

k

Ωk,λi

(
b+

k,λi
bk,λi − 1

2

)
, (13)

where the energy spectrum

Ωk,λi = 2

√(
cos

2πk

L
− λi

)2

+ γ 2 sin2 2πk

L
. (14)

Since g = 0 and then λi = λ, thus, replacing λi by λ in (11)–
(14), we can obtain the normal modes ak,λ , θk,λ , the diagonalized
Hamiltonian and the corresponding eigenenergies of the pure spin
chain. It is easily found that the relationship between the normal
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