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Correlations between single qubit and classical environment are studied by means of the stochastic
Liouville equation, where a dephasing coupling between them is assumed. When the dephasing of the
qubit is characterized by the two-state-jump Markov process, the properties of the total, classical and
quantum correlations are examined.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A quantum system interacting with a surrounding environment
undergoes irreversible time evolution which is caused by correla-
tion between the quantum system and environment [1–3]. When
an environmental system is modeled quantum mechanically, corre-
lation between two quantum systems is obtained. Such correlation
is classified into total, quantum and classical correlations [4–8]. In
particular, quantum correlation is further classified into entangle-
ment [9] and quantum discord [5]. The latter is quantum corre-
lation existing in a separable state. Tracing out the environmental
degrees of freedom from a total state, we can obtain a reduced
state of a relevant quantum system [1,3]. Besides a quantum me-
chanical environment, a classical environment is also useful for
investigating decoherence of a quantum system [10–22]. Such an
environment can be modeled by means of a classical stochastic
process [3,23]. In general, a bipartite system whose density matrix
is given by ρ̂ = ∑

k pkρ̂k ⊗ |k〉〈k| is a quantum-classical system,
where |k〉 is an orthogonal vector of one part of the total sys-
tem, pk � 0 and

∑
k pk = 1. In this Letter, we consider the case

that influences of a classical environment on a quantum system
are described by means of a stochastic process. In the rest of this
Letter, we refer to such an environment as a stochastic environ-
ment. Although a state of quantum system and stochastic envi-
ronment can be written in the form of ρ̂ = ∑

k pkρ̂k ⊗ |k〉〈k|, the
time evolution is different from that of quantum system and non-
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stochastic environment. In fact, time evolution of a non-stochastic
bipartite system obeys the ordinary Liouville–von Neumann equa-
tion ∂ρ̂(t)/∂t = −(i/h̄)[Ĥtotal, ρ̂(t)] [1–3], where Ĥtotal is a bipar-
tite Hamiltonian, while time evolution of quantum and stochastic
systems is determined by the stochastic Liouville equation [24–
29] which provides non-unitary time evolution of the total system.
Correlation between quantum and stochastic environment is not so
clear, though many works use stochastic processes for investigat-
ing decoherence of a quantum system [10–22]. The previous works
have paid attention to the decoherence of a relevant quantum sys-
tem under the influence of stochastic fluctuations. Hence it will
be worth investigating correlation between quantum system and
stochastic environment.

The methods for investigating a quantum system interacting
with a stochastic environment are classified into two methods
[24,25]. One uses a stochastic Hamiltonian [24], where the effect
of an environment on a quantum system is included as a fluctuat-
ing classical field described by means of a stochastic process. The
model that a quantum system is influenced by a stochastic fluctu-
ation has been initiated by Kubo [30] and Anderson [31] to inves-
tigate the spin relaxation process. So such a model is sometimes
called the Kubo–Anderson model. In this model, time evolution
of a density matrix ρ̂(t) is determined by the stochastic Liouville
equation ∂ρ̂(t)/∂t = −(i/h̄)[Ĥ(t), ρ̂(t)] with a stochastic Hamil-
tonian Ĥ(t) [24]. The relevant quantum system is described by
the density matrix derived by taking the average of ρ̂(t) over the
stochastic process. The other method uses the different type of the
stochastic Liouville equation (see Section 2) which has also been
developed by Kubo to investigate the relaxation phenomena [25].
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In this case, the stochastic Liouville equation determines time evo-
lution of a compound state of a whole system consisting of quan-
tum system and stochastic environment, the marginals of which
are respectively a reduced density matrix of the quantum system
and a probability distribution of a stochastic variable. Although
both methods provide the same results for time evolution of a rel-
evant quantum system [29], time evolution of correlation between
quantum system and stochastic environment is hardly studied by
means of the former method [24]. Hence to investigate correlations
between them, we need to use the stochastic Liouville equation in
the latter method [25]. In this Letter, using the stochastic Liouville
equation [25,27,29], we will derive correlations between quantum
system and stochastic environment, where the quantum system is
a single qubit (a two-level quantum system) [9] and the fluctuation
of the quantum system caused by the environment is characterized
by means of the two-state-jump Markov process [23]. We will ex-
amine whether the obtained correlations are quantum mechanical
or classical. Furthermore, we will investigate the time evolution of
correlations in the cases of the slow and fast modulations of the
dephasing.

This Letter is organized as follows. In Section 2, we briefly ex-
plain the stochastic Liouville equation for a compound state of a
whole system consisting of single qubit and stochastic environ-
ment, where the phase fluctuation of the qubit caused by the
environment is described by means of a stochastic variable of the
two-state-jump Markov process, and we derive an exact solution
of the stochastic Liouville equation. We obtain a conditional den-
sity matrix of the qubit that is essential for deriving correlations
between the qubit and the stochastic environment. In Section 3,
we find classical correlation between the qubit and the stochastic
environment, which is quantified by the Shannon mutual informa-
tion gained by performing an optimal measurement [4]. We also
discuss the total correlation and quantum correlation [5]. Further-
more, we investigate the time evolution of the correlations in the
cases of the fast and slow modulations of the dephasing. In Sec-
tion 4, we provide concluding remarks.

2. The stochastic Liouville equation and its solution

We suppose that a quantum system is influenced by a clas-
sical environment which causes pure dephasing of the quantum
system. The effect of the classical environment on the quantum
system is described by means of a Markovian stochastic process,
where the stochastic variable takes discrete values {a1,a2, . . . ,an}.
We denote as Ŵ (t,ak) a compound state of the quantum system
and the stochastic environment at time t [27,29], where ρ̂(t) =∑n

k=1 Ŵ (t,ak) represents the reduced density matrix of the quan-
tum system and P (t,ak) = Tr Ŵ (t,ak) is the probability that the
stochastic variable takes the value ak at time t . Here Tr stands
for the trace operation over the Hilbert space of the quantum
system. Furthermore ρ̂(t|ak) = Ŵ (t,ak)/P (t,ak) is a conditional
density matrix of the quantum system when the stochastic vari-
able takes the value ak [29]. If there is no correlation between
the quantum system and the stochastic environment, the condi-
tional density matrix ρ̂(t|ak) is independent of the value ak and
thus we have ρ̂(t|ak) = ρ̂(t). The time evolution of the compound
state Ŵ (t,ak) is determined by the stochastic Liouville equation
[27,29],

∂

∂t
Ŵ (t,ak) = − i

h̄
Ĥ×Ŵ (t,ak) − iVk Ŝ×Ŵ (t,ak)

+
n∑

j=1

Γkj Ŵ (t,a j), (1)

with Â× B̂ = [ Â, B̂]. In this equation, Ĥ is a Hamiltonian of
the quantum system and H int = h̄Vk Ŝ represents the interac-
tion Hamiltonian between the quantum system and stochastic
environment with Ŝ being an appropriate operator of the quan-
tum system. The parameter Γkj characterizes the Markov pro-
cess by ∂ P (t,ak)/∂t = ∑n

j=1 Γkj P (t,a j) [23], where the equality∑n
k=1 Γkj = 0 is satisfied due to a conservation law of probabil-

ity. In this Letter, we assume the two-state-jump Markov pro-
cess [23]. Hence the stochastic variable takes two values ± 1

2 Δ.
When P (∞, 1

2 Δ) = P (∞,− 1
2 Δ) = 1

2 , we can set Γ11 = Γ22 = − 1
2 γ ,

Γ12 = Γ21 = − 1
2 γ [23,29]. We further assume that V 1 = −V 2 =

1
2 Δ. Since we consider a pure dephasing process which conserves

the energy of the quantum system, the operator Ŝ commutes with
the Hamiltonian Ĥ , that is, [Ĥ, Ŝ] = 0. Hence, in the rest of this
Letter, we investigate the time evolution of the whole system in
the interaction picture. For our purpose, it is convenient to intro-
duce

Ŵ (t) =
(

Ŵ+(t)
Ŵ−(t)

)
=

(
Ŵ (t, 1

2 Δ)

Ŵ (t,− 1
2 Δ)

)
. (2)

Then we can write the stochastic Liouville equation as

∂

∂t
Ŵ (t) =

[
−iΔ Ŝ×Kz − 1

2
γ + 1

2
γ (K+ + K−)

]
Ŵ (t), (3)

with

Kz =
( 1

2 0

0 − 1
2

)
, K+ =

(
0 1
0 0

)
, K+ =

(
0 0
1 0

)
, (4)

which are the generators of the SU(2) Lie algebra [32–34].
The stochastic Liouville equation given by Eq. (3) can be solved

by means of the disentangling formula of the SU(2) Lie algebra
[32–34] and the solution is

Ŵ (t) = exp

[
−iΔt Ŝ×Kz − 1

2
γ t + 1

2
γ t(K+ + K−)

]
Ŵ (0)

=
(
Ĝ++(t) Ĝ+−(t)
Ĝ−+(t) Ĝ−−(t)

)(
Ŵ+(0)

Ŵ−(0)

)
, (5)

where the superoperators Ĝ jk(t) are given by

Ĝ++(t) = e− 1
2 γ t

[
cosh

(
γ t

2 Â

)
− i

(
Δ Ŝ×

γ

)
Â sinh

(
γ t

2 Â

)]
, (6)

Ĝ−−(t) = e− 1
2 γ t

[
cosh

(
γ t

2 Â

)
+ i

(
Δ Ŝ×

γ

)
Â sinh

(
γ t

2 Â

)]
, (7)

Ĝ+−(t) = Ĝ−+(t) = e− 1
2 γ t Â sinh

(
γ t

2 Â

)
, (8)

with

Â =
[

1 −
(

Δ Ŝ×

γ

)2]−1/2

. (9)

Then we obtain the reduced density matrix ρ̂(t) = Ŵ+(t)+ Ŵ−(t)
of the quantum system,

ρ̂(t) = e− 1
2 γ t

{
cosh

(
γ t

2 Â

)

+
[

1 − i

(
Δ Ŝ×

z

γ

)]
Â sinh

(
γ t

2 Â

)}
Ŵ+(0)

+ e− 1
2 γ t

{
cosh

(
γ t

2 Â

)

+
[

1 + i

(
Δ Ŝ×

z

γ

)]
Â sinh

(
γ t

2 Â

)}
Ŵ−(0), (10)
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