
Physics Letters A 377 (2013) 448–451

Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Remote state preparation using positive operator-valued measures

Siendong Huang

Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 July 2012
Received in revised form 10 December 2012
Accepted 12 December 2012
Available online 27 December 2012
Communicated by P.R. Holland

Keywords:
Quantum communication
Remote state preparation
Nonlocality

We consider the process of remote state preparation using a pure state |ψ〉 with the maximal Schmidt
number n. For any given state σ , pure or mixed, a construction of a positive operator-valued measure
{M j}n

j=0 is provided. The classical outcome j = 0 indicates the failure of a remote preparation of σ . All
other classical outcomes j > 0 correspond to unitary transformations of the receiver system such that
σ can be prepared. The total probability of successful remote preparation depends on the state σ . Our
protocol is a variation of conclusive teleportation and the classical bits required for this protocol are given
by log2(n + 1), which is nearly half that of conclusive teleportation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Remote state preparation (RSP) [1,2] is a variation of quantum
teleportation [3]. Both of these quantum communication protocols
are designed to prepare a qubit state |φ〉 in a remote quantum
system without sending a quantum system carrying information
about the quantum state |φ〉, but instead sending classical in-
formation through classical channels. Both protocols require the
maximally entangled qubit state previously shared by the sender
(Alice) and receiver (Bob).

The main difference between these methods is that, for quan-
tum teleportation, Alice knows nothing about |φ〉, whereas for RSP
Alice is allowed to know the state |φ〉. The knowledge of |φ〉 re-
duces the amount of resources required in RSP [1,2]. We know that
the asymptotic classical communication cost of RSP is one bit per
qubit, which is half that of quantum teleportation [4]. Unlike quan-
tum teleportation, not all qubit states can be prepared successfully
in the remote system.

Consider the case in which Alice and Bob share a non-
maximally entangled pure qubit state. Mor [5] and Horodecki and
Mor [6] have suggested the method of conclusive teleportation for
quantum teleportation. In this approach, Alice makes a positive
operator-valued measure (POVM) so that the unknown qubit state
can still be teleported, but with a probability of less than one.
The idea that both studies have proposed is applicable to finite-
dimensional cases [8,9]. However, states can be prepared remotely
and deterministically in Bob’s system by using projection measure-
ments [10].
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POVMs can provide more information about quantum states
than projective measurements can. Some tasks that cannot be per-
formed using projective measurements can be completed using
POVMs. For example, a set of non-orthogonal states cannot be
distinguished using projective measurements, but can be discrim-
inated unambiguously using POVMs [11,12]. This concept can be
used to construct POVMs in conclusive teleportation [5,6]. Thus,
determining what can be achieved by using POVMs in the RSP
process yields compelling results. For example, Solís-Prosser and
Neves proposed a strategy for RSP of spatial qubits by using a
POVM that improves the probability of preparation and the fidelity
and purity of the remote prepared states, as compared with the
method of spatial postselection [7].

In this report, we assume that Alice and Bob share a pure state
|ψ〉 with the maximal Schmidt number n. We provide a scheme
to construct a POVM {M j}n

j=0 for a known state σ . The classical
outcome j = 0 denotes the failure of the remote preparation of
|φ〉, whereas the other classical outcomes j > 0 indicate unitary
transformation in Bob’s system to prepare the state σ . Hence, the
classical bits required to send the classical information are then
given by log2(n + 1), which is nearly half of log2(n

2 + 1) for con-
clusive teleportation [8,9]. The proposed protocol is a variation of
conclusive teleportation such that Alice knows the state to prepare
in Bob’s system, and the communication cost is reduced because
of the knowledge of the state σ .

As shown in [13], POVMs can be used to prepare any pure state
remotely with a non-maximally entangled state shared previously.
Our constructions of POVMs show that mixed states can also be
prepared remotely, thus generalizing the results in [13]. The pro-
posed approach is similar to the discussion of preparable ensem-
bles for RSP by Kurucz and Adam [10]. They used the isomorphism
between pure entangled states and antilinear operators [14,15],
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whereas the proposed method is based on a one-to-one correspon-
dence between local operators with respect to the pure state |ψ〉
shared by Alice and Bob. This correspondence is a generalization
of perfect correlation associated with maximally entangled states
[16–18].

States with perfect correlation were first found by Einstein,
Podolsky, and Rosen [19], and a two-dimensional example was
provided by [20]. In a state with perfect correlation, with an out-
come of an observable of one system, the outcome of an ob-
servable of the other system can be predicted with certainty.
Thus, it establishes a one-to-one correspondence between local ob-
servables. This one-to-one correspondence can be generalized to
that between local operators with respect to states with maxi-
mal Schmidt number. By generalizing this correspondence, the RSP
process becomes clear. Conditions for using unitary transforma-
tions to prepare σ corresponding to different classical outcomes
j are found. The POVM for the remote preparation of σ is then
easy to construct. The optimal total probability of the successful
preparation of σ is also found. The proposed method simplifies the
method of the joint RSP [21], in which the information about the
pure state to be prepared remotely is considered in two parts: the
real coefficients and phases. Moreover, our strategy can be used to
prepare any mixed state remotely.

2. One-to-one correspondence between local operators

According to [16,17], a state ρ on B(HA) ⊗ B(HB) is said to
have perfect correlation if, for A = A† ∈ B(HA), there is B = B† ∈
B(HB) such that

Tr
(
ρ(A ⊗ I− I⊗ B)2) = 0, (1)

and vice versa. Eq. (1) means that the joint distribution of A and
B with respect to ρ is concentrated on the diagonal. For finite-
dimensional systems, a state with perfect correlation is a maxi-
mally entangled state Ω [18]. Consequently, Eq. (1) implies that
A ⊗ IΩ = I ⊗ BΩ , leading to a one-to-one mapping A �→ B with
respect to Ω . We know that, for a state |ψ〉 with the maximal
Schmidt number n, there is a maximally entangled state |Ψ 〉 with
the same Schmidt basis. As follows, the one-to-one mapping be-
tween local observables with respect to the maximally entangled
state |Ψ 〉 can be found explicitly and generalized to that between
local operators with respect to the state |ψ〉.

Let HA and HB be n-dimensional Hilbert spaces held by Alice
and Bob. Suppose that Alice and Bob share a pure state |ψ〉 on
HA ⊗HB with the Schmidt representation of the form

|ψ〉 =
n∑

j=1

ρ
1/2
j |e j〉| f j〉 (2)

where
∑n

j=1 ρ j = 1, ρ j �= 0 for j = 1, . . . ,n and {|e j〉}n
j=1, {| f j〉}n

j=1

are orthonormal bases for HA , HB . Define an antiunitary opera-
tor J on HA ⊗HB as follows:

J
n∑

j,k=1

λ jk|e j fk〉 =
n∑

j,k=1

λ jk|ek f j〉. (3)

J is called the modular conjugation associated with |ψ〉 [22,23],
and has the interesting properties: J = J−1 = J †. Because {|e j〉}n

1
and {| f j〉}n

1 are orthonormal bases for HA and HB , every A ∈
B(HA) and B ∈ B(HB) have the forms: A = ∑n

j,k=1 λ jk|e j〉〈ek|
and B = ∑n

j,k=1 μ jk| f j〉〈 fk|. The mapping X �→ J X J with X ∈
B(HA ⊗ HB) establishes a one-to-one correspondence between
two local algebras B(HA) and B(HB) as follows:

J

(
n∑

j,k=1

λ jk|e j〉〈ek| ⊗ I

)
J = I⊗

n∑
j,k=1

λ jk| f j〉〈 fk|. (4)

Define the following mappings jA : B(HA) → B(HB) and jB :
B(HB) → B(HA) by

jA(A) =
n∑

j,k=1

λ jk| f j〉〈 fk|, (5)

jB(B) =
n∑

j,k=1

μ jk|e j〉〈ek| (6)

for A = ∑n
j,k=1 λ jk|e j〉〈ek| and B = ∑n

j,k=1 μ jk| f j〉〈 fk|. Thus, Eq. (4)
becomes

J (A ⊗ I) J = I⊗ jA(A), (7)

and similarly for jB .
Clearly, jA is an antilinear *-isomorphism and has the following

properties:

jA(λA) = λ jA(A), (8)

jA
(

A†) = jA(A)†, (9)

jA(A1 A2) = jA(A1) jA(A2) (10)

for A, A1, A2 ∈ B(HA). The inverse of jA is given by j−1
A = jB .

Let |Ψ 〉 = ∑n
j=1 |e j〉| f j〉 be the non-normalized maximally en-

tangled state associated with |ψ〉. The perfect correlation of |Ψ 〉
can be directly expressed by jA and jB in the following way: from
(4) it holds that

A ⊗ I|Ψ 〉 = I⊗ jA
(

A†)|Ψ 〉, I⊗ B|Ψ 〉 = jB
(

B†) ⊗ I|Ψ 〉
(11)

for local operators A ∈ B(HA), B ∈ B(HB). More precisely, the
operator jA(A†) (or jB(B†)) is the only operator B (or A) in
B(HB) (or B(HA)) that satisfies A ⊗ I|Ψ 〉 = I⊗ B|Ψ 〉, respectively.
For self-adjoint operators A = A† ∈ B(HA) and B = B† ∈ B(HB),
(11) implies

〈Ψ |(A ⊗ I− I⊗ jA(A)
)2|Ψ 〉 = 0,

〈Ψ |(I⊗ B − jB(B) ⊗ I
)2|Ψ 〉 = 0. (12)

This in turn implies that the joint distribution of A and jA(A) with
respect to |Ψ 〉〈Ψ | is concentrated on the diagonal, and similarly
for B and jB(B). Hence, according to the outcome of A (or B), the
outcome of jA(A) (or jB(B)) can be predicted with certainty [16,
17]. Eq. (12) demonstrates the perfect correlation of |Ψ 〉 [17,18].
Thus, the mappings A �→ jA(A†) and B �→ jB(B†) represent the
property of the perfect correlation of |Ψ 〉.

Eq. (11) can be generalized in the following manner for a non-
maximally entangled pure state |ψ〉 (2) with the maximal Schmidt
number n. Let ρA = ∑n

j=1 ρ j |e j〉〈e j|, ρB = ∑n
j=1 ρ j| f j〉〈 f j | be the

reduced states of |ψ〉〈ψ | on HA , HB , respectively. Because |ψ〉
has the Schmidt number n, both ρA and ρB are invertible. The
relationships between |ψ〉 and |Ψ 〉 can be expressed as

|Ψ 〉 = (
ρA)−1/2 ⊗ I|ψ〉 = I⊗ (

ρB)−1/2|ψ〉. (13)

Substituting (13) into (11) leads to

A ⊗ I|ψ〉 = I⊗ TA(A)|ψ〉, B ⊗ I|ψ〉 = TB(B) ⊗ I|ψ〉 (14)

with



Download English Version:

https://daneshyari.com/en/article/10727887

Download Persian Version:

https://daneshyari.com/article/10727887

Daneshyari.com

https://daneshyari.com/en/article/10727887
https://daneshyari.com/article/10727887
https://daneshyari.com

