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Abstract

It is shown that the critical layer analysis, involved in the linear theory of internal modes, can be extended continuously into
the early nonlinear regime. For them = 1 resistive mode, the dynamical analysis involves two small parameters: the magnetic
Reynolds numberS and them = 1 mode amplitudeA, that measures the amount of nonlinearities in the system. The location of
the instantaneous critical layer and the dominant dynamical equations inside it are evaluated self-consistently, asA increases and
crosses someS-dependent thresholds. A special emphasis is put on the influence of the initialq-profile on the early nonlinear
behavior. Predictions are given for a family ofq-profiles, including the important low shear case, and shown to be consistent
with recent experimental observations.
 2005 Elsevier B.V. All rights reserved.
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Them = n = 1 internal modes, such that the safety
factor goes below one for some inner radius, remain
critical macroscopic modes for large scale tokamak
plasma dynamics and confinement. They are partic-
ularly involved in sawtooth oscillations and crashes.
This is a common deleterious phenomenon as con-
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ventional tokamak discharges eventually operate with
q0 < 1 since current density tends to a peaked profile.
Additionally, the m = n = 1 internal modes form a
laboratory prototype for reconnection. Such phenom-
ena typically proceedbeyond linear regime.

We shall consider here them = n = 1 purely re-
sistive mode[1] that is ideally marginally stable. The
original motivation of this work was to understand the
growth of them = 1 resistive mode up to its non-
linear saturation, on the basis of some striking nu-
merical simulations performed by Aydemir[2] and
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previous observations[3]. Within the reduced MHD
framework in cylindrical coordinates and some given
q-profile [2], the time behavior of the kinetic energy
in the m = 1 mode amounts to an initial exponen-
tial growth consistent with the linear regime, followed
by a transient stage where the growth rate decreases,
that is brutally interrupted by a second exponential
growth in the nonlinear regime. This second exponen-
tial stage eventually terminates, as the kinetic energy
in them = 1 mode saturates which coincides with the
completion of magnetic reconnection.

The reduced MHD system under consideration
reads

(1)
∂U

∂t
= [φ,U ] + [J,ψ],

(2)
∂ψ

∂t
= [φ,ψ] + η(J − J0).

Helical symmetry is assumed: the poloidal and toroidal
angles, respectivelyθ and ϕ, only come in through
the helical angleα = ϕ − θ . φ andψ are the plasma
velocity and helical magnetic field potentials: the ve-
locity is v = ϕ̂ × ∇⊥φ and the magnetic fieldB =
B0ϕϕ̂ + ϕ̂ × ∇⊥(ψ − r2/2). U = ∇2⊥φ is the vor-
ticity and J = ∇2⊥ψ the helical current density, with
∇2⊥ ≡ r−1∂rr∂r + r−2∂2

α . Poisson brackets are defined
by [φ,U ] = −ϕ̂ · (∇⊥φ × ∇⊥U) = r−1(∂rφ∂αU −
∂rU∂αφ). Eqs. (1), (2) are dimensionless: time has
been normalized to the poloidal Alfvén time, the ra-
dial variabler to the minor radius, andη is the inverse
of the magnetic Reynolds numberS, and is given by
the ratio of the poloidal Alfvén time to the resistive
one. In high-temperature fusion plasmas,η is typically
much smaller than one.

Consider equilibria such that, for some internal ra-
dius rs0 < 1, q(rs0) = 1, that isψ ′

0(rs0) = 0. Then,
due to the Ohm’s law(2), plasma volume divides
in two region. Far from theq = 1 surface (outer
domain), plasma behaves ideally whereas, in the
vicinity of rs0 (inner region), resistivity plays a cru-
cial, destabilizing, role. Linear theory[1] uses as-
ymptotic matching analysis to providem = 1 eigen-
functions in the formA(t)fL(r)exp(iα) valid in
the whole domain. In the outer (ideal) domain, this
solution is valid, that is nonlinear effects are neg-
ligible, as long asA � 1 [4]. Injecting the lin-
ear solutionsψ1(r,α, t) = A(t)ψL(r)exp(iα) and
φ1(r,α, t) = A(t)φL(r)exp(iα) into (1), (2) calls for

an amplitude expansion. The procedure has been given
in Refs. [4,5]. The particularity of the linear radial
eigenfunctionsψL(r) andφL(r), that needs a careful
consideration, is that they have strong gradients inside
the critical layer. More precisely, their radial deriv-
atives are of the order of the inverse of the critical
layer width, that isO(η−1/3). This means in particular
that this approach restricts to situations strictly above
marginal stability and where the linear regime is well
defined, with clear scalings, yielding the resistive or-
dering, and nonpathologicalq-profiles (in the sense of
Ref. [6]).

We wish then to answer the question: “How does
the m = 1 resistive mode develop into the nonlin-
ear regime?” To do this, let us first recognize that
the problem involvestwo small parameters. An obvi-
ous one is the resistivityη. However, considering it
to be the only one small parameter, in some pertur-
bation analysis with conventional expansions of the
type f = f0 + ηf1 + · · · would lead to a dead end:
this would bring up a singular expansion, with addi-
tional η ln(η) terms, with no asymptotic validity un-
less assuming that the mode amplitude is always kept
vanishingly small. It is interesting to note that such a
procedure would actually be valid for the tearing mode
with the small parameter limit∆′ [7,8]. In the present
case, such a perturbation analysis would be ill-posed.
A second small parameter enters the game, them = 1
mode amplitudeA that can be viewed as an indica-
tor of the amount of nonlinearities in the system. As
previously said, the approach will then be that of an
amplitude expansion.

The first step will be to determine the end of va-
lidity of the linear regime. In the outer domain, this
occurs forA of order one[4] but, in the inner domain,
the linear solution breaks earlier. This occurs when
mode coupling terms such as[φ1,U1] becomes of the
same order as linear terms, that is forA � η2/3. At this
point,m = 0 andm = 2 components begin to be “fed”
nonlinearly by mode coupling terms: them = 0 and
m = 2 modes are nonlinearly driven. However, these
mode coupling terms, quadratic inA, do not affect the
m = 1 dynamics so that one could say that them = 1
mode is still linear. At this stage, it is easy to check that
the dominant equations on them = 1 component are
still the linear ones. This means that the radial struc-
ture of the solution should remain close to the linear
one. Given that, it is possible to include the correc-
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