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Abstract

We present a method to obtain sets of vectors proving the Bell–Kochen–Specker theorem in dimensionn from a similar
set in dimensiond (3 � d < n � 2d). As an application of the method we find the smallest proofs known in dimension five
(29 vectors), six (31) and seven (34), and different sets matching the current record (36) in dimension eight.
 2005 Elsevier B.V. All rights reserved.

PACS: 03.65.Ud

Keywords: Kochen–Specker theorem; Entanglement and quantum non-locality

1. Introduction

The Bell–Kochen–Specker (BKS) theorem[1,2]
states that quantum mechanics (QM) cannot be simu-
lated by non-contextual hidden-variable theories. Any
hidden-variable theory reproducing the predictions of
QM must becontextual in the sense that the result of
an experiment must depend on which other compatible
experiments are performed jointly. The BKS theorem
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is independent of the state of the system, and is valid
for systems described in QM by Hilbert spaces of di-
mensiond � 3.

A proof of the BKS theorem consists of a set of
physical yes–no tests, represented in QM by one-
dimensional projectors, to which the rules of QM do
not allow the assignment of predefined “yes” or “no”
answers, regardless of how the system was prepared.
In this Letter, yes–no tests will be represented by the
vectors onto which the projectors project.

Several proofs of the BKS theorem in dimensions
three, four and eight are known: see, for instance,[3]
and the references in[4]. General procedures for ex-
tending the demonstration to a finite dimensionn also
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exist [4–6]. In Section2, we present a new method
to obtain sets of vectors proving the BKS theorem in
dimensionn from a similar set in dimensiond (3 �
d < n � 2d). In Section3 we compare this method
with those of[4–6]. The main interest of this method
is that it leads to the smallest proofs known in dimen-
sion five (29 vectors), six (31) and seven (34), and to
different sets matching the current record (36) in di-
mension eight. These proofs are explicitly presented
for the first time in Section4; a preliminary version of
them was referred to in[7,8].

Which one is the smallest number of yes–no tests
needed to prove the BKS theorem in each dimen-
sion? This is an old question[4]. Recently, it has been
proven that the answer is 18 for dimension four[9],
and that there are no proofs with less yes–no tests in
any dimension[10]. The proofs presented in Section4
give an upper bound to this search in dimensions five
to eight. The important point is that these bounds are
sufficiently small so as to apply recently developed ap-
proaches capable to exhaustively explore all possible
proofs of the BKS theorem[9,10]. The practical lim-
itation of these approaches is that the complexity of
the exploration grows exponentially with the number
of vectors, making it difficult to explore all possible
sets involving 30 vectors or more.

A set of n-dimensional vectorsX := {uj }Nj=1 is a
proof of the BKS theorem if we cannot assign to each
vectoruj a v(uj ) such that:

(a) Eachv(uj ) has a uniquely defined value, 0 or 1
(“black” or “white”); this value isnon-contextual,
i.e., does not depend on which othersv(uk) are
jointly considered.

(b)
∑n

i=1 v(ui ) = 1 ∀ set of n mutually orthogonal
vectors{ui}ni=1 ∈ X.

In that caseX is said to be “non-colourable”.
A proof of the BKS theorem is said to be “critical”
if all vectors involved are essential for the proof.

2. Recursive proof of the Bell–Kochen–Specker
theorem

Let A := {ai}fi=1, ai = (ai1, . . . , aid), be a proof
in dimensiond . For anyn := d + m, 1 � m � d , let
us define two sets ofn-dimensional vectors,B∗ :=

{bi}fi=1, C∗ := {ci}fi=1, obtained by appending to each
vectorai m zero componentson the right andon the
left, respectively;bi := (ai1, . . . , aid ,0, . . . ,0), ci :=
(0, . . . ,0, ai1, . . . , aid). Let us also define the follow-
ing sets ofn-dimensional vectors:�B := {bj }f +m

j=f +1,

bjk := δj−f +d,k ; �C := {cj }f +m

j=f +1, cjk := δj−f,k ;

B := B∗ ∪ �B = {bj }f +m

j=1 , C := C∗ ∪ �C = {cj }f +m

j=1 .

Lemma. B is BKS-colourable if and only if

(1)
f +m∑

j=f +1

v(bj ) = 1.

Proof. The sets ofd mutually orthogonal vectors inA
become sets ofn mutually orthogonal vectors inB,
sharing the lastm vectors,bj ∈ �B, j = f +1, . . . , f +
m. If condition (1) is fulfilled, we can colourB sim-
ply by assigning the valuesv(bj ) = 0, j = 1, . . . , f ;
conditions (a) and (b) are automatically satisfied. Con-
versely: if (1) is not verified, thenv(bj ) = 0, j =
f + 1, . . . , f + m; the impossibility to colour setA
in dimensiond following rules (a), (b) implies the im-
possibility to colourB in dimensionn. �

The same reasoning applies toC: C is colourable
if and only if

(2)
m∑

j=1

v(cj ) = 1.

Theorem. D := B ∪ C is a non-colourable set.

Proof. If d < n � 2d , then�B ∩ �C = ∅; conditions(1)
and(2), necessary to colourB andC, would imply the
existence of two mutually orthogonal vectors,bk ∈ �B,
cl ∈ �C, with valuesv(bk) = 1, v(cl ) = 1; this prevents
D = B ∪ C from being coloured following rule (b);
thereforeD is a non-colourable set.�

The numberg of different vectors in setD is g �
2(f + m); the extreme is reached only ifB ∩ C = ∅.
In general, setD is not critical (i.e., some subsets ofD

are also non-colourable sets). To search for critical
subsets, we will use a generalization to arbitrary di-
mension of the computer program of Ref.[11].
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