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In this work we analyze and compare different approaches to the heat transfer problem in gas mixtures.
Our aim is to show that for rarefied gases far from equilibrium the extended thermodynamics description
is capable to reproduce some features observed by kinetic theory, that cannot be described by the Navier-
Stokes-Fourier-Fick approximations. In this framework, we consider the case of a binary inert gas mixture
confined between two infinite parallel plates kept at different temperatures.
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1. Introduction

Gas mixtures are usually described following two different ap-
proaches: through models obtained at a microscopic level by the
kinetic theory [1-5] or by means of models derived at a macro-
scopic level from the continuum theory [6-13]. For simplicity, the
macroscopic description of a mixture is often accompanied by the
assumption of a common temperature for all the constituents, at
least when the atomic masses of the species do not differ too
much, and also in the present Letter we will refer to this sim-
plifying hypothesis.

A kinetic description is surely more accurate than continuum
phenomenological models, but requires much more computational
time to get precise results. For this reason fluid mixtures are often
described referring to the Navier-Stokes-Fourier-Fick approxima-
tions with a single common temperature (NSFF). Such a model
could be satisfactory for dense gases, but it is surely not appropri-
ate for rarefied gases or when strong deviations from equilibrium
occur. In these cases, for single fluids, Extended Thermodynam-
ics (ET) provides better results [13]. That's why we shall analyze
here a very simple single-temperature ET model that can be also
viewed as a Grad equation system [14] for multi-component flu-
ids. We will compare its predictions with those obtained by NSFF
equations and by kinetic theory (Boltzmann equation). To this aim,
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we will refer to steady heat transfer between parallel plates in rar-
efied gases, since it is one of the simplest non-equilibrium physical
examples and represents a first good test run for the validation
and comparison of different approaches to the mixture descrip-
tion. What is already known in the literature is that NSFF system
fails to take into account one of the most peculiar behavior of a
mixture: the thermal diffusion [3,8]. Is an ET single-temperature
model able to catch such a phenomenon? In what follows we will
try to answer to this question.

2. Field equations

In the framework of rational thermodynamics [6,9], fluid mix-
tures are treated assuming that for each component it is possible
to write the same balance laws as for a single fluid (except for the
production terms). Furthermore, the equations for the entire mix-
ture are the same as for a single fluid. Here, we will follow this
theory for both classical and extended thermodynamics. We will
focus on a binary inert gas mixture in a stationary regime and re-
fer to the index o = 1,2 for the two constituents, assuming that
the two atomic masses satisfy the condition m; < m,.

2.1. An extended thermodynamics single-temperature model

The simplest extended thermodynamics model for a homoge-
neous gas mixture is the single-temperature system proposed by
Heckl and Miiller [10] and also studied by Kremer [12]. In such a
theory the field variables are not only the classical ones, like pres-
sures p“, velocities v, and common temperature T, but also the
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heat fluxes g and the traceless parts of the stress tensors pgk).
For these new variables suitable balance laws are derived. The sys-
tem of field equations is composed by the equations for the entire
mixture and those relative to the first constituent.

If we consider the stationary heat transfer problem between
two parallel plates, we can suppose that the fields depend only
on the space coordinate x (orthogonal to the plates) and that the
velocity of the mixture v; (mass-center velocity) vanishes. More-
over, we will take into account the BGK productions [15]. We will
denote by J¥ = p%uf the diffusion flux, and by uf =v{¥ —v; and
pY respectively the diffusion velocity and the mass density of the
«o-constituent.

Besides the mass density, in mixture theory one often refers to
particle number density and mass concentration, that respectively
read
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Hence, the equations of model [10] reduce to
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for the first component, together with the algebraic relations
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Egs. (2)12 represent the conservation laws of momentum and
energy for the whole mixture, while (3)1, are respectively the
conservation law of mass (no chemical reaction is taken into ac-
count) and the balance law of momentum for the first constituent.
In addition, (2)3 and (3)s; are the balance laws for the heat fluxes
relative to the whole mixture and to the first constituent. Finally,
(3)4 and (4) represent the balance laws for the stress tensor.
The field equations (2)-(4) are written in terms of the dimen-
sionless fields and parameters
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where L is the gap between the plates, To, P and n§ suitable
values of the common temperature, the total pressure and the
number densities, while Kn plays the role of the Knudsen num-
ber related to the heaviest component of the mixture as in [4].

The variables that do not appear in system (2)-(4) vanish iden-
tically.

2.2. (lassical thermodynamics single-temperature approach

The classical approach to inert mixture theory, with a sin-
gle common temperature and under the same assumptions made
for the extended thermodynamics model, introduces the following
field equations
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for the first component, together with the relations (4).

In Eq. (7)4 we introduced the dimensionless velocity v! =
v1//kgTo/my. This is related to the dimensionless diffusion flux
through the relation j' = 5!, where p! =rpp!/T.

Egs. (6)12 and (7)1 coincide with those of the ET theory, while
(6)3 and (7)3 represent the Fourier law appropriate to the whole
mixture and to the first component. Then, (4) and (7)4 recover the
Navier-Stokes law.

In particular, (7); is a generalization of the Fick law, that fol-
lows from the balance law of momentum for the first mixture
constituent.

3. Boundary conditions and calculation

Here we will consider a stationary regime and impermeable
walls. So, the diffusion fluxes of the mixture components will van-
ish at a boundary and, from (2);, it is deduced that ]1 =0, V&. Fur-
thermore, four other conditions can be associated to this problem.
First of all, we can impose two boundary conditions prescribing the
values of the common temperature at both plates. Moreover, in a
real experiment the total amount of each constituent is assigned,
so here it is reasonable to fix the values of the average number
densities of both species. It can be easily shown that this condition
for the previous models is mathematically equivalent to prescribe
the total pressure at a wall and the ratio between the average
number densities of the two components. Unfortunately, from an
analytical and numerical point of view it is very difficult to solve
the equation system imposing directly such constraints for the av-
erage densities. For this reason, in what follows, we will assign the
number density values of both components at the right boundary
(n%), choosing them in such a manner that the previous conditions
about the total pressure and the ratio of the average densities are
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