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A direct numerical simulation of particle dispersion in particle-laden swirling jets issued into a
rectangular container through a round nozzle is carried out. The swirl number is S = 1.42 when the
bubble vortex breakdown takes place. Two cases are simulated for comparison, i.e. five types of particles
with Stokes numbers St = 0.01, 0.1, 1, 10 and 100 respectively under the same flow rate, and four types of
particles with St = 0.5, 1, 5 and 10 respectively under the same mass loading. After simulation, it is found
that the rectangular flow domain induces an important modification to the flow structure. It influences
the dispersion characteristics in the peripheral cross area, forming a centrosymmetric dispersion of
particles in the cross-sectional area. A quantitative analysis of the non-uniform particle dispersion is
carried out. Moreover, the effect of mass loading on particle dispersion is explored and explained. It
indicates the correlation between the inter-phase moment coupling and particle mass loading via the
change of probability density function of the inter-phase velocity difference. Heavy mass loading causes
an insufficient inter-phase momentum transport and the worse dispersion of large particles than that of
small mass loading.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Gas–solid dispersed flow is of great importance for both sci-
entific researches and engineering applications, e.g. the dispersion
characteristics of coal particle is important for transportation in
ducts and combustion efficiency in combustion devices, etc. There
exhibits a variety of interesting phenomena, e.g. preferential ac-
cumulations [1–3]. Many studies have shown that the preferen-
tial particle concentration is associated with large-scale structures
which disperse particles effectively and dominate particle motions
[4–6].

The particle dispersion in swirling flows is important for
swirling combustion systems and gas–solid cyclone separators.
With regard to particle concentration in swirling flows, Wicker and
Eaton [7] showed the presence of large vortex structures which
have similar effects on particle distribution. Apte et al. [8] and Gui
et al. [9] carried out respectively a large-eddy simulation and a
direct numerical simulation of swirling particle-laden flows in a
coaxial-jet combustor corresponding to a previous experiment by
Sommerfeld and Qiu [10,11], focusing on the particle dispersion
characteristics and distribution patterns, etc. In these studies, par-
ticle dispersion is shown to be related closely to the large-scales
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vortex structure as well as the particle response characteristics.
The particle response property is appropriately characterized by
the Stokes number, which plays an important role in preferen-
tial concentration. Heavy particles tend to accumulate in regions
where the strain rate dominates over vorticity, whereas light par-
ticles tend to accumulate in regions of intense vorticity [12].

Although the effects of larger vortex and the response prop-
erty (characterized by the Stokes number) on particle dispersion
are well explained, the effect of mass loading on particle disper-
sion has not been well explored. Moreover, the structure of large
vortex may be influenced by the configuration of the flow do-
main. Does the modification of flow structure affect the particle
dispersion, and how does it work? These issues have not been well
explained yet. Thus, the present study will focus on the effects of
flow structure and mass loading on modification of the character-
istics of particle dispersions.

For numerical simulation of dispersed flows, the Lagrangian
point-force/particle method has been used for a long history,
which uses either a one-way coupling approach [13,14] or a two-
way coupling approach [15]. In this approach, the dispersed phase
is considered as discrete points and traced under the Lagrangian
framework by solving the equations of motion, without taking into
account the effects of particle volumes, such as wakes after par-
ticles. The carrier phase is simulated under the Eulerian approach
by some types of CFD technique, such as RANS, LES or DNS, etc.
The present study will use the point-particle tracking technique to
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simulate the disperse phase and the direct numerical simulation
method to simulate the carrier phase. A particle-laden swirling
flow with a large swirl number and moderate Reynolds numbers
is carried out with reference to a previous experiment by Billant
et al. [16]. The case with the particle number flow rate fixed and
the case with the particle mass loading fixed are simulated to ex-
plore the effects of mass loading and large scales of flow structure
on the behavior of particle dispersion.

2. Numerical method

2.1. Governing equation of fluids

The governing equations of the carrier phase are the three-
dimensional, time dependent, incompressible Navier–Stokes equa-
tions:
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= 0 (1)
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where ui , p are fluid velocity and pressure respectively, and f p is
the drag force of particles. When the particle density is far larger
than that of the fluid, the drag force is of the leading order com-
pared to other hydrodynamic forces [9,17]. Thus, the other forces,
such as virtual mass force, Saffman force, Magnus force, pressure
gradient force and buoyancy forces are omitted. As a result, only
the − f p is considered here as the backward force from particle to
fluid.

The dimensionless flow domain is a rectangular container, with
30d × 10d × 10d in streamwise (x), lateral (y), spanwise (z) di-
rections respectively, where d = 0.4 mm is the diameter of the jet
at the inlet. In this study, “d” is used as the characteristic length
for non-dimensionalization of the governing equations. The jet is
issued from the centre of the upstream area at x = 0. The in-
let axial and azimuthal velocity profiles are specified according to
Ref. [16]. The downstream outlet in the x-direction is the non-
reflecting boundary [18]. Otherwise, the side walls in the lateral
and spanwise directions are set as nonslip wall boundaries.

The Reynolds number is Re = U0d/ν = 606 and 3000 for cases 1
and 2 respectively (Table 1), where U0 is the inflow mean stream-
wise velocity and also the characteristic velocity. The swirl number
is defined as the ratio of maximum azimuthal velocity to the mean
streamwise velocity at the inlet S = 2V max/U0, which is fixed as
S = 1.42 here.

To solve the above equations, a total number of 384×128×128
grids are used, which can resolve the scales of turbulence as fine as
about 0.075d. The Kolmogorov length scale η (∼ (ν3/ε)1/4) is es-
timated as η = 0.065d when Re = 606. Thus, the spatial resolution
requirement for direct numerical simulation is met. The simulation
time step is �t = 0.005, and a total period of dimensionless time
of T = 100 is computed.

To perform numerical solution, the finite volume method and
the fractional-step projection technique [19] are applied. An ex-
plicit low-storage, third-order Runge–Kutta scheme [20] is used for
time integration. A direct fast elliptic solver is used to solve the
Poisson equation. The validation of the numerical method has al-
ready been done in a previous study of Ref. [21].

2.2. Motion equation of particles

In this study, focusing on the dispersion characteristics of par-
ticles, the discrete phase is assumed to be: a) a dilute flow regime,
where the particle–particle collisions are omitted; b) spherical par-
ticles with uniform diameters and densities; c) as demonstrated

Table 1
Simulation conditions for the two cases.

Case 1: keep ṅp (= 10/step) St = 0.01 ml = 1.41 × 10−5 (kg/kg)
St = 0.1 ml = 4.45 × 10−4 (kg/kg)
St = 1 ml = 1.41 × 10−2 (kg/kg)
St = 10 ml = 4.45 × 10−1 (kg/kg)
St = 100 ml = 1.42 (kg/kg)

Case 2: keep ml (= 0.134 kg/kg) St = 0.5 ṅp = 268/(1 time step)
St = 1 ṅp = 95/(1 time step)
St = 5 ṅp = 17/(2 time step)
St = 10 ṅp = 3/(1 time step)

ṅp the particle number flow rate (/step); ml the particle mass loading (kg/kg).

by Gui et al. [9], the Saffman force and Magnus force are of the
secondary importance when compared to the drag force, they are
omitted here as well as other types of hydrodynamic forces. Hence,
only the drag force is computed.

Based on these assumptions, the motion equations of any dis-
crete particle are solved in a deterministic way. For any particle,
the particle motion equation is:

mp
dṽp

dt
= πd2

p

8
C Dρ f |ũ − ṽp|(ũ − ṽp) (3)

where ρ f and u are fluid density and velocity vector respec-
tively. vp , mp , dp are particle velocity, mass, diameter respec-
tively. ‘˜’ denotes the dimensional variable. C D = 24 f /Rep is the
drag coefficient. f = 1 + 0.15Re0.687

p [22] is the drag factor and
Rep = |u − vp |dp/ν is the particle Reynolds number. By simple de-
ductions, Eq. (3) is reduced to

dṽp

dt
= f

τp
(ũ − ṽp) (4)

where τp = ρpd2
p/(18μ) is the particle aerodynamic response time.

Finally, Eq. (4) is non-dimensionalized into

dvp

dt
= f

St
(u − vp) (5)

dXp

dt
= vp (6)

where St = τp/τ f = τp/(d/U0) is the Stokes number.
Initially, the particles are generated in the cross-sectional area

at the jet inlet with a uniform random distribution. An initial ve-
locity difference between the particle and fluid phase is set, i.e. the
inlet velocity of particles V p,0 = 0.59U0 here.

As aforementioned, two cases are simulated (Table 1): firstly,
we kept the number flow rate of particles with different Stokes
numbers at a low Reynolds number. Secondly, we kept the mass
loading of particles under different number flow rates at a mod-
erate Reynolds number. It is necessary to mention that the condi-
tions of two cases do not match each other exactly. We tried to
simulate the cases with a large range of variation of the parame-
ters, but it is greatly restricted by the computer performance. For
example, under the same mass loading, the number of particles of
St = 0.01 and 100 may vary over a wide range of ∼ O (106). It goes
beyond the computer capacity. Thus, the simulation conditions are
restrained.

3. Results and discussion

3.1. The effect of flow structure on particle dispersion

At first, Fig. 1 shows the flow structure of the large vortices
with regard to the vortex breakdown (case 1, at t = 5, x = 10d).
It is shown that there exists an evident recirculation zone en-
closed by the large-scale vortices (Fig. 1a). It is the so-called bub-
ble vortex breakdown. Moreover, it is found from Fig. 1b that
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