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The coherent manipulation of the atomic matter waves is of great interest both in science and technology.
In order to study how an atom optic device alters the coherence of an atomic beam, we consider the
quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field.
We extend the analysis of this quantum lens to the study of another essentially quantum property
present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic
coherence and purity are affected by the entanglement. The dynamics of this process is obtained in
closed form. We calculate the beam quality factor and the trace of the square of the reduced density
matrix as a function of the average photon number in order to analyze the coherence and purity of the
atomic beam during the focusing process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal proposal for laser cooling of atoms in di-
lute gases and atom trapping [2], the manipulation of all atomic
motional degrees of freedom based on the atom interaction with
external light fields have reached enormous success. Given the re-
cent advances in the manipulation of atoms we now observe a
fast evolution of the field both in terms of scientific knowledge
and technological applications, like in precision sensors, precise
metrology and clocks, lithography, single atom manipulation, trace
gas analysis and ultracold chemistry [3]. In addition, the area of
quantum information processing has benefited from such advances
due to the establishment of precise quantum protocols. From the
theoretical viewpoint the modeling of strongly correlated materi-
als and nonequilibrium quantum dynamics are stimulating areas of
research.

The dynamics of atomic beams share an intimately close anal-
ogy with classical laser light in the paraxial approximation. The
Gouy phase discovered and measured in 1890 in the latter context
is found in any beam subject to confinement which adds a well-
defined phase shift and has implications and applications in many
optical systems [4]. The existence of a particle wave analogy to this
phenomenon has been first pointed out in Refs. [5] followed by an
experimental proposal in Cavity Quantum Electrodynamics (CQED)
[6]. Very recently this proposal has stimulated the search for the

* Corresponding author.

matter wave Gouy phase in different systems: Bose–Einstein con-
densates [7], electron vortex beams [8], and astigmatic electron
matter waves using in-line holography [9]. The Gouy phase car-
ries intrinsic properties of the initial state and dictates the time
scale of the process.

In the present work we explore the quantum version of experi-
mental set up proposed in Ref. [6] in order to show how it may be
of use to explore other quantum features as atom–field entangle-
ment, analysis of atomic quantum lenses proposal in [1] to study
the discrete nature of the field. The actual measurement of this
phenomenon represents a major experimental challenge, since a
quantum tomography would be required. We show here however,
that the measurement of the covariance matrix of the center of
mass atomic wavefunction indicates the presence of entanglement.
Purity loss, although far from being an easily measurable quan-
tity is shown to reveal the entanglement dynamics which occurs
in the focusing process. We setup a model (within experimen-
tal reach) of a focusing and deflection of a nonresonant atomic
beam propagating through a spatially inhomogeneous quantized
electromagnetic field. The interaction of a nonresonant atom with
an electromagnetic field in the so-called dispersive approximation
is proportional both to the field intensity and the susceptibility
of the atom. Therefore atoms under the influence of such fields
may suffer mechanical effects such as deviations in their center
of mass motion and deflection. In the present case we will use
this property to focus atomic beams. We address the question as
to the manifestation of quantum effects in the focusing process.
In Ref. [1] the discrete character of the photons was shown to be
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Fig. 1. Quantum lens. A beam of nonresonant atoms propagating initially along the
z-axis interacts with the light field in the region −L � z � 0. Different Fock states
deflect the atoms in different directions and focus them at different points. The
initial width of the atomic beam is b0 and b′

0 represents its width at the focus.

observable in such experiments. Our aim within a similar scheme
is to enlighten another quantum aspect, entanglement. Interaction
is the key ingredient to produce entanglement which is an impor-
tant characteristic of quantum information protocols. We study its
behavior in the atomic focusing process.

In Section 2 we present the model which is essentially the
same as the one used in Refs. [1,10] with the difference that we
calculate the probability amplitude instead of the intensities. Our
procedure enable us to determine the density matrix of the sys-
tem. In Section 3, we present our results, in the covariance matrix
and the atom–field entanglement properties as a function of the
average photon number n̄ showing that one aspect of the clas-
sical limit of the field is the suppression of entanglement as n̄
increases. This is also apparent in the covariance matrix. The inde-
pendence of the field’s granular nature on the number of photons,
shown in Refs. [1,10], occurs because in that model the authors
relax the dispersive limit condition. In the present model, we pre-
serve the dispersive limit and the classical limit of the field is a
consequence of the disentanglement between atom and field, ap-
parent in the conservation of the initial purity and coherence of
the atomic beam.

2. The model

In this section we present a model that permit us focusing
an atomic beam and find an expression for the Gouy phase of
matter waves that is a connection of this phase with the inverse
square of the beam width. We consider an atomic beam propagat-
ing through a spatially inhomogeneous quantized electromagnetic
field. The atomic beam will suffer deflection and focusing. Different
Fock states deflect the atoms in different angles and focus them at
different points. We suppose that the atomic beam is initially in
a coherent Gaussian state and obtain the equations of motion for
the parameters that characterize the structure of the wavepacket.
We see that the equations of motion is not consistent if the atomic
beam was represented at time by the one Gaussian state without
the Gouy phase term.

The model is presented in Fig. 1 in which we use the following
[1,10]: consider two-level atoms moving along the O z direction
and that they enter in a region where a stationary electromagnetic
field is maintained. The region is the interval z = −L until z = 0.
The atomic linear momentum in this direction is such that the
de Broglie wavelength associated is much smaller than the wave-
length of the electromagnetic field. We assume that the atomic
center of mass moves classically along direction O z and the atomic
transition of interest is detuned from the mode of the electromag-
netic field (dispersive interaction). The Hamiltonian for this model
is given by

ĤAF = p̂2
x

2m
+ g(x̂)â†â, (1)

where m is the atom mass, p̂x and x̂ are the linear momentum
and position along the direction O x, â† and â are the creation and
destruction operators of a photon of the electromagnetic mode, re-
spectively. The coupling between atom and field is given by the
function g(x) = αE2(x) where α is the atomic linear susceptibil-

ity, α = ℘2

h̄�
, where ℘2 is the square of the dipole moment and �

is the detuning from nearest atomic resonance. E(x) corresponds
to the electric field amplitude in vacuum. The effective interaction
time is tL = L

vz
, where vz is the longitudinal velocity of the atoms.

For simplicity the field distribution in z-direction of length L is as-
sumed to have a rectangular profile as expressed by the Heaviside
step functions θ(z). The initial width of the atomic beam is b0 and
b′

0 represents its width at the focus.
The dynamics of the closed system is governed by the Schrö-

dinger equation

ih̄
d

dt

∣∣Ψ (t)
〉 = ĤAF

∣∣Ψ (t)
〉
. (2)

At t = 0 the state of the system is given by a direct product of the
state corresponding to the transverse component of the atom and
a field state, |ΨCM〉 ⊗ |ΨF 〉. The field state can be expanded in the
eigenstates of the number operator â†â

|ΨF 〉 =
∑

n

wn|n〉,
∑

n

|ωn|2 = 1. (3)

When atom and field interact the atomic and field states get en-
tangled. We can then write

∣∣Ψ (t)
〉 = ∑

n

wn

+∞∫
−∞

dxψn(x, t)|x〉 ⊗ |n〉, (4)

where

ih̄
∂

∂t
ψn(x, t) =

{
− h̄2

2m
∇2 + g(x)n

}
ψn(x, t), (5)

or, if one defines

∣∣Ψn(t)
〉 =

+∞∫
−∞

dxψn(x, t)|x〉, (6)

Eq. (5) takes the form

ih̄
d

dt

∣∣Ψn(t)
〉 = [

p̂2
x

2m
+ g(x̂)n

]∣∣Ψn(t)
〉
. (7)

Next, we will use the harmonic approximation for g(x) where we
consider that the electric field has a node in the atomic beam axis.
In addition, we considered that the width of the transverse atomic
beam b0 is much smaller than the wavelength λ of the field. In this
case, as a good approximation, the field creates one square well
potential for the atom in the transverse coordinate [1,10]. There-
fore we take only the main terms of the Taylor expansion of the
function g(x),

g(x) ≈ g0 − g2
1

2g2
+ 1

2
g2(x − x f )

2, (8)

where g0 ≡ g(x = 0), g1 ≡ dg/dx|x=0, g2 ≡ d2 g/dx2|x=0, x f ≡
−g1/g2 and Ω2

n = ng2/m. The combination of linear and the
quadratic contributions of the potential in a binomial reduces the
problem to the motion in the harmonic potential Un(x) = Un(x f )+
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