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The star products in symbolic dynamics, as effective algebraic operations for describing self-similar
bifurcation structure in classical dynamical systems, are found to have either associativity or non-
associativity. In this Letter, non-associative star products in trimodal iterative dynamical systems are
considered. As the left and right operations have different effects, right-associative star products break
the conventional Feigenbaum’s metric universality. Through high precision parallel computation, it is
found that period-p-tupling bifurcation processes described by right-associative star products exhibit a
superconvergent universality of double exponential form.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of Feigenbaum’s universal constants α (scaling
factor) and δ (convergence rate) [1,2] is a milestone in the devel-
opment of nonlinear science. Independent of specific maps, these
two constants certainly represent a physical universality. The for-
mer describes the self-similarity of orbits of strange attractors in
the phase space; the latter describes the successive ratio of param-
eters of period-doubling or period-p-tupling bifurcations. Although
discovered directly in iterative dynamical systems, they also ex-
ist in physical systems (such as the Rayleigh–Bénard system [3],
the forced Brusselator [4] and the periodically driven Rössler os-
cillator [5]) when these systems are transformed by the Poincaré
sections into lower-dimensional systems, or iterative systems be-
come higher-dimensional physical systems by suspensions. More-
over, they were proved to be nature’s numbers in mathematics
[6], and observed in experiments of superfluid helium-4 [7], drip-
ping faucet [8], pendulum [9], electric circuit [10], and dynamics
of a railway wheelset [11], etc. More examples can be found in
Ref. [12].

Since being discovered in the late 1970s, Feigenbaum’s con-
stants have greatly stimulated theoretical studies of nonlinear
physical systems. Feigenbaum introduced Wilson’s renormalization
group in critical phenomena into the self-similar renormalization
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group equation in the critical area of phase orbits of nonlinear sys-
tems, which determines a fixed point in the functional space [13].
This functional renormalization group equation has important the-
oretical significance: the universality for describing self-similarity
is contained in this equation which relates the two universal con-
stants via itself and its linearized equation. As different universal
constants (α(W ) and δ(W )) are corresponding to different sym-
bolic sequences W (with different renormalization group equa-
tions), they provide a new degree of freedom [14] for the study
of nonlinear systems. Theoretical extensions along this direction
are the cycle expansion [15] and the Riemann zeta-function the-
ory [16] of chaotic systems. Thus Feigenbaum’s constants can be
theoretically analyzed and calculated.

Before developing such renormalization group analyses, an ef-
fective approach to calculating universal constants is to find more
star products in symbolic dynamics which can describe self-similar
orbits and are the inverse procedure of renormalizations. To study
universality of period-p-tupling bifurcations in multimodal maps,
the Derrida–Gervois–Pomeau (DGP) star product in unimodal maps
[17] has been generalized to dual star products in bimodal maps
[18,19] and cyclic star products in trimodal and quadrumodal maps
[20,21], respectively. As important algebraic tools for inverse renor-
malizations in symbolic space, the generalized normal star prod-
ucts are associative and preserve the topological entropy [22–24,
19,25,26]. These two features ensure Feigenbaum’s constants (con-
vergence rates or bifurcation “speeds”) to be first-order geometric
ratios.

However, with the rapid progress of high speed and high pre-
cision computation as well as the generalization of star products,
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abnormal phenomena appear: the associative law of star products
is broken and Feigenbaum’s successive ratios (bifurcation “speeds”)
turn out to be divergent [27]. In this Letter, our numerical results
show that these superconvergent bifurcation processes are dou-
ble exponential, which can be described by right-associative non-
normal star products and regarded as the second-order effect of
Feigenbaum’s universality; whereas the conventional Feigenbaum’s
constants, appearing as geometric ratios under the control of equal
topological entropy classes, represent the first-order (i.e. exponen-
tial) effect of universality. It is known that non-associative algebras,
such as the Lie algebra and the Jordan algebra, have been widely
used in physics, especially in quantum mechanics, but they are rare
in classical dynamical systems. Our finding requires a stronger as-
sociative order of physical operators, just like noncommutativity
should be considered in the study of some fine effects in quan-
tum mechanics, such as the Lamb shift and the Zeeman effect of
hydrogen [28]. Although physical systems are commonly associa-
tive, this Letter definitely reveals a phenomenon of non-associative
physical quantities, and indicates that its superconvergent univer-
sality has a double exponential form. This superconvergent effect
does not appear in unimodal and bimodal systems; it can only
be observed when systems become trimodal and even m-modal
(m > 3) and are studied by high precision numerical experiment.
It would be possible, for example, to detect such superconvergent
effect in some fine physical systems (such as circuit systems [29])
if equipped with suitable bifurcation controls [30]. The appear-
ance of non-associativity in nonlinear dynamics is an interesting
phenomenon worth being investigated, which may lead to new re-
search beyond Feigenbaum’s universality.

This Letter is organized as follows: In Section 2, we briefly re-
call symbolic dynamics of trimodal maps, and then present the
divergence phenomenon of Feigenbaum’s universality with an ex-
ample of period-tripling bifurcation. In Section 3, we analyze this
divergence and give the superconvergent universality of a dou-
ble exponential form. Finally in Section 4, we discuss the possible
reasons of occurrence of this superconvergence by analyzing the
differences between non-associative star products and associative
ones from the viewpoint of the difference in structures of the or-
bits and in behaviors of the topological entropy invariants.

2. Divergence of generalized Feigenbaum’s successive ratios

We first briefly recall some basic notions of symbolic dynam-
ics of trimodal maps. Consider an arbitrary trimodal map fμ,ν,ξ :
I → I on the real interval I = [−1,1], which depends on three pa-
rameters (μ,ν, ξ) ⊂ R

3 and can be written as x j+1 = fμ,ν,ξ (x j).
The map f (simplified notation for fμ,ν,ξ ) has three critical (or
turning) points denoted as C1 = C, C2 = D, C3 = E and four mono-
tone branches as L, M, N, R , respectively (supposing L to be a
monotone increasing branch, i.e., the shape of f to be (+−+−)

type). Let c1, c2, c3 be coordinates of three critical points, then
we have −1 < c1 < c2 < c3 < 1. Obviously, the symbolic order
L < C < M < D < N < E < R is a natural order.

For a trimodal map f , starting from an initial point x0, a nu-
merical orbit (x0, x1, . . . , x j, . . .) can be obtained by iterating f ,
while a symbolic sequence W = w0 w1 . . . w j . . . is assigned by
the following coarse-grained description: w j = L, C, M, D, N, E, R
for x j ∈ [−1, c1), x j = c1, x j ∈ (c1, c2), x j = c2, x j ∈ (c2, c3), x j =
c3, x j ∈ (c3,1], respectively. A sequence starting from a critical
point is called a kneading sequence. A periodic sequence pass-
ing through all the three critical points is called a triply super-
stable kneading (TSSK) sequence. In this Letter, the symbolic space
ΣZ

+
4 refers to the set of all TSSK sequences of alphabet Σ4 =

{L, C, M, D, N, E, R}.
According to the ordering of appearances of critical points, TSSK

sequences can be divided into six types: Z E X DY C , Y C Z E X D ,

X DY C Z E , X D Z EY C , Z EY C X D and Y C X D Z E , where X , Y and
Z are sequences of symbols L, M , N and R . Correspondingly,
there are also six types of cyclic star products: (E|D|C)-, (C |E|D)-,
(D|C |E)-, (D|E|C)-, (E|C |D)- and (C |D|E)-type (cf. [20] for the
specific composition rules or multiplication tables). For simplicity,
here we only present the composition rules of the (E|D|C)-type
star product. For any two given TSSK sequences W1 = Z1 E X1 DY1C
and W2 = Z2 E X2 DY2C = w2

1 w2
2 . . . w2

j . . . w2|W2| , where w2
j ∈ Σ4

and |W2| denotes the period or length of W2, the star product
W1 ∗ W2 can be calculated as

W1 ∗ W2 = Z1 E X1 DY1C ∗ Z2 E X2 DY2C

=
|W2|⋃

j=1

(
Z1 E X1 DY1C ∗ w2

j

)

=
|W2|⋃

j=1

Z1
(

E ∗ w2
j

)τ (Z1)
X1

(
D ∗ w2

j

)τ (X1)
Y1

(
C ∗ w2

j

)τ (Y1)
,

where ∪ means the concatenation of subsequences (U ∪ V = U V );
τ (Z1), τ (X1) and τ (Y1) are parities of subsequences Z1, X1 and Y1
in W1 = Z1 E X1 DY1C defined as: τ (W ) = + if J (W ) is even, and
τ (W ) = − if J (W ) is odd, where J (W ) is the number of appear-
ances of letter M and R in a sequence W . To obtain a (E|D|C)-type
star product, the procedure of multiplication of letters needs to be
carried out according to the following composition rules: E ∗ L =
E ∗ C = E ∗ M = E ∗ D = E ∗ N = E− , E ∗ E = E0, E ∗ R = E+;
D ∗ L = D ∗ C = D ∗ M = D− , D ∗ D = D0, D ∗ N = D ∗ E = D+ ,
D ∗ R = D−; C ∗ L = C+ , C ∗ C = C0, C ∗ M = C ∗ D = C ∗ N = C− ,
C ∗ E = C ∗ R = C+; finally, C− , C0, C+ , D− , D0, D+ , E− , E0 and
E+ are translated into letters L, C , M , D , N , E and R , respec-
tively: C− = L, C0 = C , C+ = D− = M , D0 = D , D+ = E− = N ,
E0 = E , and E+ = R . For example, we can easily get E DC ∗ E DC =
E N MN DLN MC .

Let W1, W2 and W3 be TSSK sequences, we call a star product
∗ an associative star product if the associativity (W1 ∗ W2) ∗ W3 =
W1 ∗ (W2 ∗ W3) holds; otherwise a non-associative star product.
Computer experiments show that only (C |E|D)- and (E|C |D)-type
star products are associative, all the other four types of cyclic star
products are non-associative. For instance, for the (E|D|C)-type
star product mentioned above, one can easily get

(E DC ∗ E DC) ∗ E DC

= E N MN MLN MLN N MN DLN MMN N MN N LN MC ,

and

E DC ∗ (E DC ∗ E DC)

= E N MN N LN MLN N LN DLN MMN N LN MLN MC .

Obviously (E DC ∗ E DC) ∗ E DC �= E DC ∗ (E DC ∗ E DC). The non-
associative star products are first found in trimodal maps [27]; in
fact, they always exist in m-modal maps for m � 3.

It is known that a period-p-tupling bifurcation process can be
described by self star products W ∗n of a TSSK sequence W (with
p = |W |). Once the associativity of algebraic products is broken,
we need to consider the left- and right-multiplications of algebraic
products, respectively. Here, we denote left-associativity (of non-
associative star products) as

W ∗n
l = W ∗(n−1)

l ∗ W , (1)

and right-associativity as

W ∗n
r = W ∗ W ∗(n−1)

r . (2)
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