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The dynamics of hydrogen dissolved in a sample with continuous distribution of traps over trapping
energy ϕ(ε) ∝ exp(−αε) (ε = E/T is the ratio of trapping energy E to the sample’s temperature T )
is considered. Assuming that the hydrogen density is smaller than the trap density and the most of
hydrogen is trapped, we found that the dynamics of hydrogen transport can be described by either sub-
diffusion or non-linear diffusion equations. Analysis of the outgassing of the sample homogeneously
loaded with hydrogen gives, in the most important cases, both power-law, ΓH ∝ t−p (p ≥ 1/2) and
exponential, ln(ΓH) ∝ −tα , time dependencies of the outgassing flux, ΓH(t).
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1. Introduction

Tritium retention in the material of the first wall is one of the
main issues for future fusion reactors (e.g. see Ref. [1] and the
references therein). Therefore, it is important to understand the
physics of retention caused by trapping of hydrogenic species in
imperfections of material lattices (e.g. vacancies, impurities, grain
boundaries, etc.).

In the studies of the hydrogen retention the modeling of hy-
drogen thermal desorption spectra (TDS) is the most common ap-
proach. Potentially such modeling can provide the information on
both the trapping energies and amount of hydrogen trapped in
different traps. Usually modeling is performed with 1D reaction–
diffusion (RD) equations (which take into account hydrogen dif-
fusion and trapping–detrapping processes) and proper boundary
conditions at the surfaces (e.g. see Ref. [2] and the references
therein). In most cases only two–three traps with different trap-
ping energy are considered.

However, in fusion devices majority of retained hydrogen is
accumulated in a co-deposited material [1,3,4]. This material con-
tains a large amount of hydrogen and, probably, has amorphous-
like structure, which may have traps characterized by a large vari-
ety of trapping energies. As a result, to describe hydrogen transport
in and outgassing from co-deposits one should use large number of
the RD equations. But in this case a more appropriate way for the

* Corresponding author.

description of hydrogen transport could be based on a continuum
kinetic model of the population of traps over activation energy
(broadband distribution), E , assuming that detrapping energy spec-
trum, PE(ε), is known (here ε = E/T , T is the wall temperature)
[5]. We notice that recently similar broadband approach was sug-
gested to use for the modeling of hydrogen retention in plasma
facing components exposed to large fluence of 14 MeV neutrons
[6], since standard methods were inadequate to fit experimental
data. This is not surprising, since material damage associated with
neutrons results in effective “amorphorization” of material struc-
ture, which becomes somewhat similar to that in co-deposits.

In Ref. [5] it was shown that for the case of a broadband
trap distribution the transport of a trace particle can be ana-
lyzed with the theory of random walk on a lattice with varying
waiting time, τ , given by the probability function, Pτ (τ ) (e.g.
see Ref. [7] and the references therein). This probability func-
tion can be expressed in terms of PE(ε) as follows: Pτ (τ ) =∫ ∞

0 { f (τ/τE)/τE}PE(ε)dε, where τE = τ0 exp(ε), τ is the normal-
ization constant, and the function f (τ/τE) describes the contribu-
tion to the waiting time distribution from one kind of traps with
the energy E: Pτ (τ , E) = f (τ/τE)/τE). For PE(ε) = α exp(−αε) we
find Pτ (τ → ∞) ∝ τ−(1+α) , which for 0 < α < 1 and the simple
cubic lattice with size �, corresponds to the sub-diffusion process
[7] resulting in a power-law time dependence of the outgassing
flux: ΓH(t) ∝ t−(1−α/2) . Recalling recent results on the outgassing
dynamics in JET and Tor Supra showing ΓH(t) ∝ t−0.7 [3,4], we can
conclude that within our approach these experimental results can
be explained with exponential trapping spectrum for α = 0.6 [5].
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For porous media, to which co-deposits might be attributed for,
the effective step size � for a walker can also be random and
described by the probability function P�(�). For the case where
P�(� → ∞) ∝ 1/�1+β and 1 < β < 2 hydrogen transport will be
impacted by Levi flights [8]. Combination of power-law distribu-
tions of waiting time (0 < α < 1) and step-size (1 < β < 2) of a
random walker results in a transport process, which can be de-
scribed by partial fractional differential equation [8]

∂α[H]
∂tα

= Deff
∂2/(3−β)[H]
∂t2/(3−β)

, (1)

where [H] is the hydrogen density and Deff is the effective “diffu-
sion” coefficient. We notice that partial fractional differential equa-
tions are used to describe transport phenomena in different areas
of science including anomalous plasma transport in fusion devices
[9,10].

Thus we see that the broadband distribution of traps over trap-
ping energy results in much richer physics than the standard mod-
els with just two–three energy traps. However, in Ref. [5] only
trace approximation of hydrogen in material was considered as-
suming that all traps are virtually unoccupied. In practice this is
not the case. Therefore, in what follows we will analyze the im-
pact of non-linear processes of hydrogen transport related to the
occupation of traps with broadband energy distribution.

In Section 2 we derive hydrogen transport equation for PE(ε) =
α exp(−αε). In Section 3 we consider different analytically trac-
table limits of this equation. In Section 4 we derive the expres-
sions for the time dependence of hydrogen outgassing flux ΓH(t)
in different regimes and in Section 5 we summarize our main con-
clusions.

2. Hydrogen transport equations for continuous distribution of
traps over trapping energy

We assume that there stationary and homogeneous continuous
distribution of traps over trapping energy, which is described by
the distribution function ϕ(ε), so that the trap’s density can be ex-
pressed as Ntr = ∫

ϕ(ε)dε, where ε = E/T is the ratio of trapping
energy E to the sample’s temperature T . The population of these
traps with hydrogen we will describe with the distribution func-
tion f (ε,�r, t), so that the density of trapped hydrogen, ntr(�r, t), is
ntr(�r, t) = ∫

f (ε,�r, t)dε. Then the reaction–diffusion equations with
continues trap distribution can be written as follows:

∂nfr

∂t
= D∇2nfr − dε

{
Ktrnfr(ϕ − f ) − νdt(ε) f

}
, (2)

∂ f

∂t
= Ktrnfr(ϕ − f ) − νdt(ε) f , (3)

where nfr(�r, t) is the density of free hydrogen, Ktr and νd(ε) =
ν̂d exp(−e) are correspondingly the rate constant and frequency
of hydrogen trapping and detrapping processes (here ν̂d is the
normalization constant and we assume that Ktr does not depend
on ε). We notice that Eq. (2) or Eq. (3) can be substituted with
the equation describing the balance of total hydrogen density,
NH = nfr + ntr:

∂NH

∂t
= D∇2nfr. (4)

We will consider the solution of Eqs. (2)–(4) aimed on hydrogen
outgassing from the sample under some assumptions:

(i) The density of free hydrogen is smaller than the trapped one,

NH ≈ nfr 
 ntr, (5)

since the opposite case, taking into account Eq. (4), is trivial;

(ii) Hydrogen density is much smaller than the density of traps,
Ntr,

NH < Ntr. (6)

(iii) Trap density is relatively small, so that

νtr ≡ KtrNtr < ν̂d. (7)

(iv) The scale length of hydrogen density variation, Δ, and, there-
fore, effective diffusion time of free hydrogen, τΔ ∼ Δ2/D , are
large enough so that retrapping of free hydrogen is vital for
the hydrogen dynamics:

νtrτΔ > 1. (8)

In opposite case hydrogen flux will be simply determined by
the detrapping process of initial distribution of trapped hydro-
gen.

If we ignore the impact of free hydrogen diffusion, than the
system (2), (3) will approach with time the equilibrium distribu-
tion function

feq(ε) = ϕ(ε)
Ktrnfr

Ktrnfr + νd(ε)
, (9)

which gives the following relation between free and trapped hy-
drogen densities for equilibrium condition:

(ntr)eq = feq(ε)dε ≡ dε
ϕ(ε)Ktrnfr

Ktrnfr + νd(ε)
. (10)

In general case from Eq. (3) we find a formal solution for the
distribution function

f = f0 exp
{−(

Ktrη(t) − νdt
)} +

t∫
0

dt′ϕKtr
dη(t′)

dt′

× exp
{−[

Ktr
(
η(t) − η

(
t′)) − νd

(
t − t′)]}, (11)

where

η(t) =
t∫

0

nfr
(
t′)dt′ and f0(ε,�r) ≡ f (ε,�r, t = 0). (12)

To proceed any further we need to specify the function ϕ(ε). In
what follows, we will assume that

ϕ(ε) = αNtr exp(−αε), (13)

where α is an adjustable parameter. Recalling that the variable ε
is the ratio of trapping energy E to the sample’s temperature T ,
such choice for ϕ(ε) looks quite natural. To describe the cases
where sample’s temperature varies in time we can adopt a proper
time variation of α = α(t). However, in this study we will assume
α = const. Recall that in Ref. [5] it was shown that in the linear
approximation (neglecting the term ∝ nfr f in the right-hand side
of Eqs. (2), (3)) such choice of ϕ(ε) with α < 1 describes a ran-
dom walk with a power-law waiting time distribution resulting in
a sub-diffusion process.

By using Eq. (13) we find that for the equilibrium condition
we have the following relation between free and trapped hydrogen
densities

(ntr)eq = Ntr

(
Ktrnfr

ν̂d

)α
(ν̂d/Ktrnfr)

α∫
0

dξ

1 + ξ1/α
. (14)
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