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We propose a simple and experimental architecture to generate macroscopic entanglement in a solid
system which consists of two large Josephson junctions and a flux qubit. Through quantum measuring of
flux qubit, entangled coherent states of two large Josephson junctions are obtained. The concurrence of
entangled coherent states can be accommodated by adjusted systematic parameters. We also give a brief
discussion on the experimental feasibility of this proposal.
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Entangled coherent states have important applications in dif-
ferent areas, which include quantum optic and quantum informa-
tion [1]. In particular, because of its robustness against single-
particle decoherence compared with discrete entangled states, en-
tangled coherent states have attracted much attention and shown
powerful in quantum information processing [1]. Therefore, in-
creasing attention has been paid to generating entangled coher-
ent states in various physical systems, which include quantum
optic [2], microwave cavity QED [3], trapped ions [4], and Bose–
Einstein condensation system [5], but not yet realized experimen-
tally, until now.

In recent years, solid circuit superconducting devices (e.g.
Cooper-pair boxes, Josephson junctions, and superconducting quan-
tum interference device (SQUID)) have been proposed as candi-
dates to serve as qubits for a superconducting quantum com-
puter, due to their advantage in design flexibility, large-scale in-
tegration, and compatibility to conventional electronics [6]. More-
over, preparing two- or three-particle discrete entangled states
have been experimentally implemented with superconducting sys-
tems [7]. In addition, generating entangled coherent states with
superconducting system have been proposed in Refs. [8,9]. How-
ever, owing to the complex structure of these schemes [8] and that
the initial state must be in coherent state [9], successful genera-
tion of entangled coherent states is still a challenge with currently
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experimental techniques. In this paper, we will study how to gen-
erate entangled coherent states with a simply model, which can
be fabricated on a chip down to the micrometer scale. Our pro-
posal only composes two large Josephson junctions (LJJs) and a
flux qubit which acts as a coupler. By means of measuring the
states of the flux qubit, the entangled coherent states of LJJs are
prepared via one-step evolution only. So, comparing with previous
theoretical proposals [9], our scheme does not require initial state
in coherent state. So, it is easier to implement.

The quantum characters of LJJ have been widely studied [10],
in the early years. Using a LJJ coupled to two charge qubits was
first proposed in Ref. [11]. Then, generation of entanglement of
two charge-phase qubits through LJJ was discussed [12]. Here, we
first consider a physical system which uses a flux qubit to couple
two LJJs. The Hamiltonian of the LJJ can be written as [13]

H J = EC N2 − E J cosγ , (1)

where EC expresses the charging energy, N is the excess Cooper
pairs, E J denotes the Josephson energy, and γ defines the phase
drop across the LJJ. When the LJJ works in the phase regime, we
can use a harmonic oscillator model approximately equivalent to
LJJ, so the Hamiltonian is

H J = h̄ωa†a, (2)

where bosonic operators a† = ξ
2 γ − i 1

2ξ
N and a = ξ

2 γ + i 1
2ξ

N with

parameter ξ = (E J /EC )1/4; and plasma frequency ω = √
8EC E J /h̄.
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Fig. 1. Schematic diagram of two large Josephson junctions (denoted by a large
square with an X inside) coupled by a flux qubit (denoted by three small squares
with an X inside). For a three-junction flux qubit, two junctions have the same
Josephson coupling energy E J f , and the third junction has the coupling energy
αE J f (0.5 < α < 1) smaller than that of the other two junctions. All junctions are
linked by a superconducting line.

The structure of a flux qubit [14] consists of three Josephson
junctions with a superconducting loop, and the charging energy is
much smaller than the Josephson coupling energy for each junc-
tion. The Hamiltonian of the flux qubit can be described as a
two-level system

H f = 1

2
ε(Φ)σz − 1

2
Δσx, (3)

where ε(Φ) = 2I p(Φ0 − Φ) is the energy spacing of the two clas-
sical current states, I p is persistent current of the flux qubit, Φ0 =
h/2e is the magnetic-flux quantum, Φ is the external magnetic flux
applied to the qubit; Δ is the energy gap between the two states
at the degeneracy point; Pauli matrices σz = |e〉〈e| − |g〉〈g| and
σx = |e〉〈g| + |g〉〈e| are defined in terms of the classical current,
where |g〉 = | �〉 and |e〉 = | �〉 denote the states with clockwise
and counterclockwise currents in the loop.

The model is shown in Fig. 1. Two LJJs of left and right are
coupled by a middle flux qubit. According to Kirchhoff’s current
law, the current of through flux qubit equal to the sum of two LJJ.
The fluxoid quantization relation for this circuit is γ + ϕ1 + ϕ2 −
ϕ3 + 2πΦ/Φ0 = 0. Due to the Josephson energy of LJJ is larger
than other junctions, the Hamiltonian of the total system can be
described by

H = H J 1 + H J 2 + H f + Hint

=
2∑

i=1

h̄ωia
†
i ai + 1

2
ε(Φ)σz − 1

2
Δσx +

2∑
i=1

g′
i

(
a†

i + ai
)
σz, (4)

where the last term describes the spin–boson interaction between
the flux qubit and the two LJJs, with the coupling strength g′

i =
I pΦ0/2πξ . After transformation to the eigenbasis {|0〉 = cos θ

2 |e〉+
sin θ

2 |g〉, |1〉 = − sin θ
2 |e〉 + cos θ

2 |g〉} of the flux qubit with the pa-
rameter θ = 2 arctan Δ

ε(Φ)
, the Hamiltonian can be rewritten as

H =
2∑

i=1

h̄ωia
†
i ai + h̄Ω

2
Sz +

2∑
i=1

h̄g′
i

(
a†

i + ai
)
(cos θ Sz − sin θ Sx),

(5)

where h̄Ω = √
ε2(Φ) + Δ2, Sz = |1〉〈1| − |0〉〈0|, and Sx = |1〉〈0| +

|0〉〈1|. Under the condition Ω � {ωi, gi}, we can neglect the
rapidly oscillating terms, in the interaction picture, the Hamilto-
nian of the total system can be reduced to

H =
2∑

i=1

h̄gi
(
a†

i eiωi t + aie
−iωi t

)
Sz, (6)

where gi is the effective coupling coefficient given by gi =
g′

iε(Φ)/
√

ε2(Φ) + Δ2.
Next, we discuss how to generate macroscopic entangled coher-

ent states with our scheme. Due to the bosonic operators {ai,a†
i , I}

form a closed Lie algebra, the evolution operator of Hamilto-
nian (6) can be written in a factorized way [15]

U =
∏

i

exp(−i f i0)exp(−i f i1ai)exp
(−i f i2a†

i

)
, (7)

where f i0, f i1, f i2 and f i3 are the time-dependent coefficients. By
solving equation ih̄∂U/∂t = HU with the initial condition f i0(0) =
f i1(0) = f i2(0) = 0, we get f i0 = g2

i [(1 − e−iωi t)/iωi − t]/ωi, f i1 =
f ∗

i2 = igi(e−iωi t − 1)Sz/ωi . Suppose the LJJs are initially in their
ground states |01〉|02〉 (the subscripts 1 and 2 represent the left
and right LJJ, respectively) and the flux qubit is initially in a su-
perposition state 1√

2
(|0〉+ |1〉). Hence, the state of the total system

can be written as |Ψ (0)〉 = 1√
2
(|0〉+|1〉)|01〉|02〉 at t = 0. Under the

unitary operator (7), the initial state of the total system evolves as

∣∣Ψ (t)
〉 = 1√

2

(|0〉∣∣α1(t)
〉∣∣α2(t)

〉 + |1〉∣∣−α1(t)
〉∣∣−α2(t)

〉)
, (8)

which is a tripartite entangled state of one flux qubit and two LJJs.

Here |αi(t)〉 = eαi(t)a
†
i −α∗

i (t)ai |0i〉 is a coherent state characterized
by the complex variable αi(t) = gi

ωi
(1 − eiωi t). Then, by means of

a unitary transformation, we change the basis states |0〉 and |1〉
of the flux qubit back to the original basis states |g〉 and |e〉, the
quantum state (8) becomes
∣∣Ψ (t)

〉

= 1√
2

(
cos

θ

2

∣∣α1(t)
〉∣∣α2(t)

〉 − sin
θ

2

∣∣−α1(t)
〉∣∣−α2(t)

〉)|e〉

+ 1√
2

(
sin

θ

2

∣∣α1(t)
〉∣∣α2(t)

〉 + cos
θ

2

∣∣−α1(t)
〉∣∣−α2(t)

〉)|g〉.
(9)

When we measure the flux qubit in original basis {|g〉, |e〉}, the
quantum state of two LJJs collapses into |Ψ+〉 = 1√

2
(sin θ

2 |α1(t)〉×
|α2(t)〉+ cos θ

2 |−α1(t)〉|−α2(t)〉) or |Ψ−〉 = 1√
2
(cos θ

2 |α1(t)〉|α2(t)〉
− sin θ

2 |−α1(t)〉|−α2(t)〉) with corresponding to the measured re-
sults of the flux qubit in the state |g〉 or |e〉. In other word, two
kinds of entangled coherent states of LJJ were generated with the
outcome possibility of 50%. The measurement of superconducting
qubit is widely used to read out the state [16,17]. Here, we can
use the method of Ref. [18], which introduces a rf superconducting
quantum interference devices coupler to respective mediate the in-
teraction between a flux qubit and the detector, between a flux
qubit and a Josephson bifurcation amplifier. This method realizes
a ideal quantum measurement of a superconducting flux qubit by
a Josephson bifurcation amplifier. Also, another quantum measure-
ment flux qubit method can be used in our scheme. Single-shot
readout of a superconducting flux qubit by using a flux-driven
Josephson parametric amplifier [19]. And, by continuously mon-
itoring the qubit, quantum jumps between the qubit eigenstates
can be observed. All measurements were performed using a dilu-
tion refrigerator at the base temperature T ∼ 10 mK [19].

Obviously, |Ψ+〉 and |Ψ−〉 are bipartite entangled nonorthogo-
nal states. Here, we use the concept of concurrence for bipartite
entangled nonorthogonal states [20]. It is easy to show that the
concurrence for |Ψ±〉 is

C± = | sin θ |
√

(1 − e−4|α1|2)(1 − e−4|α2|2)
1 ± e−2(|α1|2+|α2|2)| sin θ | . (10)
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