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Extended topological defects (ETDs) arising in spherical hexagonal crystals due to their curvature
are considered. These prevalent defects carry a unit total topological charge and are surrounded by
scalene pentagonal boundaries. Topological peculiarities of reactions between ETDs and dislocations are
considered. Similarly to boundaries of the usual planar crystalline order the ETDs emit and absorb the
dislocations without preservation of their dislocational charge. Dislocations located inside the ETD area
lose it and the enforced ETD decay can proceed in different ways without conservation of the total
Burgers vector of the dislocations emitted.

© 2014 Elsevier B.V. All rights reserved.

Two-dimensional (2D) ordered structures with an unusual
topology are under discussion since the very beginning of the
20th century. Trying to explain the periodic law of Mendeleev,
J.J. Thomson proposed a model of atom, according to which the
electrons confined at the sphere surface interact by means of
Coulomb potential. Determination of the equilibrium position of
repelling equally-charged particles on the sphere was called the
Thomson problem [1]. Later, it was generalized to the case of non-
Coulomb potentials [2]. Tammes considered the similar problem
how N identical spherical caps should be packed on the sphere to
provide the maximal cap size [3].

Experimental investigation of the behavior of colloidal particles
located at the interface between two liquids was started by Rams-
den [4] in 1903. More than a century later this study led to the
synthesis of nanoporous capsules – colloidosoms [5]. Similar or-
dered structures appear in various systems. For example, they are
formed by viral capsid proteins [6,7], localized electrons in multi-
electron bubbles in superfluid helium [8], Pickering emulsion on
spherical surfaces [9–11] and even occur in coding theory [12,13].
All these natural and synthetic objects are more or less ordered
structures forming the 2D closed shells topologically equivalent to
a sphere.

Due to the curved topology new crystallographic peculiarities
appear in these systems [14]. One of such peculiarities is the in-
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evitable existence of topological defects that causes the curvature
of the ordered 2D spherical structures. Depending on presence of
the other types of defects the spherical structures can be divided
into two groups. The viral capsids from the first group demonstrate
the ‘perfect’ spherical crystalline [6] or quasicrystalline [15] struc-
tures with the regular curvature-related topological defects only.
The spherical crystals from the second group are more disordered.
Examples are solid colloidosomes and 2D colloidal crystals formed
on the spherical surfaces [5,9,11]. The important features of these
systems are presence of dislocations usual for the planar hexagonal
lattice and not so symmetric arrangement of topological defects,
which often take the form of scars [10]. The other ‘exotic’ ETDs un-
conventional for the planar geometry are also possible. The related
defect motifs were studied in the frame of the Thomson problem
[16,17]. Recently, formation of ETDs with a square order inside on
the colloidosome surface [5], was explained [18] in the frame of
Lennard-Jones inter-particle coupling.

The pioneer experimental work [10] devoted to the peculiar-
ities of the spherical order in colloidal crystals was published a
decade ago. It was found that this order is very sensitive to the
ratio R/a, where R is the radius of the sphere and a is an aver-
age particle radius. For R/a � 5 the authors of Ref. [10] have found
linear defects, which they called grain boundaries, or scars. These
defects present the chains consisting of closely located particles
with different surroundings. Particles having 5 or 7 nearest neigh-
bors sequentially alternate in the scars, while the other particles
have 6 neighbors. Therefore the scar is usually treated as a se-
quence of elementary 5-fold and 7-fold disclinations. These defects
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have been investigated in subsequent experimental and theoretical
studies [11,19]. The theory [19] successfully considers the spherical
hexagonal order in colloidal crystals as a result of simple repulsion
of particles retained on a spherical surface and explains formation
of scars in the frames of continuum approach. However, as demon-
strated below for the case of the simplest repulsive pair potentials,
the emerging spherical hexagonal order is essentially distorted in
the relatively wide areas of ETDs, where only the Delaunay trian-
gulation [20] can match the nodes with their neighbors and thus
localize the relatively narrow scars.

The aim of this Letter is to demonstrate new topological prop-
erties of ETDs arising in spherical crystals due to their curvature.
Here we show that: (i) enforced decay of the ETD does not con-
serve the total Burgers vector of the dislocations emitted; (ii) dislo-
cations within the ETD area lose their dislocational charge and the
order outside the defect doesn’t display their existence in any way.

We start our consideration from some more or less known pe-
culiarities of spherical hexagonal order. Let us recall that the self-
assembly of 2D structure on a non-planar surface can be described
by the conditional minimization of the system free energy F with
respect to coordinates of the system particles. The condition im-
posed is that any particle during minimization should be on the
surface under consideration. The order in the spherical colloidal
crystals is successfully modeled and analytically studied in the
frame of the simplest power low pair potentials [16,17,19] when
the free energy has the form:

F = ε

N∑
j>i

1

rα
i j

, (1)

where ri j is the distance between ith and jth particles, N is the
number of particles. The exponent α = 1 for Coulombic long range
interaction of charges, while the solution of Tammes problem [3]
(very short-range interaction) corresponds to α → ∞. The inter-
action of particles by means of Lennard-Jones pair potential is
also reduced to energy (1) with α = 12 provided the particles
on a sphere are located closely enough and the term associated
with their repulsion prevails over their attraction. Note also that
the conditional minimization of Eq. (1) yields different equilibrium
structures corresponding to the same values of N and α depending
on the initial distribution of particles.

Numerically obtained spherical structure with N = 700 parti-
cle and α = 12 (see Fig. 1) is a typical one for the N range from
400 to 1000 and for the α values in the range of several tens
(for larger α the numerical minimization of (1) becomes difficult).
Analogous structures corresponding to minima of energy (1) can
be also obtained with the help of public domain programs, see for
example [21]. Global-minima spherical structures with α = 1 are
extensively studied. The putative list of them for N < 20 000 can
be found at the same site, see also [17]. The hexagonal order in the
global-minima structures is more perfect than in the local-minima
ones and the areas occupied by the extended defects are smaller.
However, for the same N value the equilibrium energies of global
and local-minima structures are very close [14]. If this value in-
creases, the difference between the equilibrium energies is reduced
and the number of hexagonal structures with the similar energies,
but different arrangement of particles in defects, grows exponen-
tially [22]. Due to this fact, it is much more probable to observe
experimentally a colloidal crystal corresponding to one of numer-
ous local minima than that with the globally minimal free energy.
This point of view is also supported by our observation that ETDs
in experimental colloidal crystals [5,10,11] are more complicated
(for example, the scars are longer) than the defects in the global-
minima theoretical spherical structures presented in [21].

Note that the total topological charge [10] of the ETD is com-
pletely determined by the number of sides of characteristic poly-

Fig. 1. (Color online.) Spherical structure with N = 700 particles. Extended topolog-
ical defects with the unit positive topological charge are highlighted by red pen-
tagons. Orange and purple circles denote particles with the smallest (E p < 0.5Eavg )
and the largest (E p > 1.34Eavg ) energy per particle, respectively. Here E p is the en-
ergy per particle and Eavg is the average energy per particle.

gon, surrounding the defect provided the polygon satisfies two
following conditions: (1) the polygon sides pass only through the
nodes with six neighbors; (2) the angle between the nearest poly-
gon sides in the initial planar hexagonal order is equal to 2π/3.
Then the total topological charge q of the defect is simply defined
as

q = 6 − m, (2)

where m is the number of sides of the characteristic polygon. The
conventional dislocations without a topological charge can always
be surrounded by hexagons. The ETDs with the total charge q = 1
are surrounded by pentagons which are scalene in general case.
Let us recall that the simplest local 5-fold disclination (surrounded
by the regular pentagon) is usually associated with elimination of
the π/3 sector from the hexagonal planar lattice [14]. In general,
the edges of the eliminated sector can be glued after some relative
shift equal to a translation of the initial hexagonal order. Such a
shift implies that the characteristic pentagon is scalene and the
initial hexagonal order near the top of the resulting solid angle
is broken strongly within the defect area. But these peculiarities
cannot change the total topological charge of the defect provided
it is surrounded by the outer hexagonal order.

We have obtained about 50 spherical structures, with the num-
ber of ordered repulsive particles from 700 to 1000. Different ini-
tial random distributions of particles and different algorithms of
energy (1) minimization (including the algorithm [23]) regularly
resulted in appearance of extended areas with essentially distorted
hexagonal order. In all the cases, the hexagonal order surround-
ing the defects was global. We have found no defects which do
not allow the continuous circulation around. This particle arrange-
ment corresponds always to more or less defective mapping of a
single planar hexagonal lattice onto the sphere by means of the
icosahedron net. We were always able to localize exactly twelve
ETDs surrounded by pentagons. These defects repel each other and
are located approximately near the vertices of an icosahedron (see
Fig. 1). Spherical structures with arrangement of defects near the
vertices of an icosahedron were obtained theoretically [19] and
observed experimentally [11]. These topologically induced defects
of spherical hexagonal order are usually treated as linear scars
[10,11,19]. However, as we explain below such an interpretation
of the defects is incomplete.

Let us recall, that the scars were initially defined as ‘high-angle
(30◦) grain boundaries, which terminate freely within the crys-
tal’ [10]. Later it was understood that the scars have a variable
rotation angle from 0◦ (at the scar ends) to 30◦ (at the scar cen-
ter) [11]. Our numerical simulations demonstrate that inside the
ETD area the structure is strongly disordered (see Figs. 1 and 2)
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