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Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological
quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to
electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field.
In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum
process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only
two Coulomb-interacting electrons. At filling factor ν = 1

3 of the lowest Landau level the solution agrees
with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin’s Jastrow-
type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical
justification deduced from the experimental results and based on first principles.

© 2014 Elsevier B.V. All rights reserved.

Perhaps the most spectacular physical concept introduced in
the description of the fractional quantum Hall effect (FQHE) is
the composite fermion (CF). It consists in an intricate mixture
of Ne electrons and vortices in a two-dimensional (2D) electron
gas orthogonal to a (strong) magnetic field such that the low-
est Landau level (LLL) is only partially occupied. Actually, the CF
concept provides an intuitive phenomenological way of looking
at electron–electron correlations as a part of sophisticated many-
particle quantum effects where charged electrons do avoid each
other by correlating their relative motion in the energetically most
advantageous fashion conditioned by the magnetic field. Therefore
it is picturesquely assumed that each electron lies at the center of
a vortex whose trough represents the outward displacement of all
fellow electrons and, hence, accounts for actual decrease of their
mutual repulsion [1,3]. Or, equivalently, in the simplest case of
Ne = 2 electrons considered in the present Letter, that two flux
quanta Φ0 = hc/e are “attached” to each electron, turning the pair
into a LLL of two CFs with a 6Φ0 resulting flux [2]. The correspond-
ing Aharonov–Bohm quantum phase shift equals 2π . In addition to
the π phase shift of core electrons, this is in agreement with the
requirements of the Laughlin correlations expressed by the Jastrow
polynomial of degree 3 and corresponding to the LLL filling factor
ν = 1

3 [4,5]. Laughlin’s guessed wavefunction for odd polynomial
degree was soon regarded as a Bose condensate [6–8] whereas
for even degree, it was considered as a mathematical artefact de-
scribing a Hall metal that consists of a well-defined Fermi surface
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at a vanishing magnetic field generated by a Chern–Simons gauge
transformation of the state at exactly ν = 1

2 [9,10].
Although they provide a simple appealing single-particle il-

lustration of Laughlin correlations, the physical origin of the CF,
auxiliary field, and magnetic fluxes remains unclear. In particular,
the way they are fixed to particles is not explained. Hence tenta-
tive theories avoiding the CF concept like e.g. a recent topological
formulation of FQHE [11]. In the present Letter, we show how a
strongly nonlinear mean-field quantum model, directly deduced
from the experimental results, provides an alternative Hamiltonian
physical description, based on first principles, of the debated CF
quasiparticle.

Consider the 2D electron pair confined in the x–y plane un-
der the action of the orthogonal magnetic field B. The electrons
are situated at z1,2 = x1,2 + iy1,2. We adopt the usual center-
of-mass coordinate z̄ = (z1 + z2)/2 and the internal separation
z = (z1 − z2)/

√
2 and we select odd-m angular momenta mh̄ in

order to comply with the antisymmetry of the two-electron orbital
wavefunction under electron interchange. The spins are aligned
with the magnetic field, and thus in a symmetric state. The eigen-
state corresponding to the internal motion is Ψm(z) = um(r)eimφ

where z = reiφ . We adopt the units of length and energy given
by the cyclotron radius λc = √

h̄/(Mωc) and by the Larmor energy
h̄ωL = 1

2 h̄ωc = h̄eB/(2Mc) where M denotes the effective mass of
the electron which may incorporate many-body effects. The eigen-
state um is given by [5]:

[
∇2

X + Em + m − m2

X2
− X2

4
− K

X

]
um = 0. (1)
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Fig. 1. (Upper panel) The “trajectory” C|1〉(0) vs [du|1〉/dX]0 for increasing K values
within the interval [0,15] as indicated by the arrows, corresponding to the initial
conditions of the LSP problem (5)–(7). (Lower panel) The corresponding “trajectory”
defined by the initial conditions of the NSP differential system (5) and (8). The
circle indicates the ν = 1

3 FQHE solution defined by (4). In both plots, the K = 0
free-electron case is defined by the upper left point du/dX |0 = 0 and C(0) = 2.

The radial part of the 2D Laplacian operator is ∇2
X = d2/dX2 +

X−1(d/dX), the energy eigenvalue is Em and X = r/λc . The dimen-
sionless parameter

K = √
2

e2/(ελc)

h̄ωc
, (2)

where ε is the dielectric constant of the semiconductor host, com-
pares the Coulomb interaction between the two particles with
the cyclotron energy. Obviously, K = 0 corresponds to the free-
particle case. Actually, the internal motion could be approximated
by the 2D free-particle harmonic oscillator eigenstate |m〉 as long
as K �

√
2, i.e. B � 6 T in GaAs [5]. However, in the experimental

conditions specific to the FQHE the magnetic field is much higher.
In Ref. [12] the energy gaps of FQHE states related to samples A
and B, at filling factors p/(2p ± 1), between ν = 1

4 and ν = 1
2 , are

shown to increase linearly with the deviation of B from the respec-
tive characteristic values B A

1
2

= 9.25 T, B A
1
4

= 18.50 T and B B
1
2

= 19 T

(where the superscripts refer to the samples). The corresponding
slopes respectively yield the direct measures M A = 0.63, M A =
0.93 and MB = 0.92 of the effective electron mass in units of the
electron mass me . Indeed, since these masses scale like λ−1

c and
hence like

√
B , for they are determined by electron–electron in-

teraction, we have 0.63/
√

9.25 = 0.207 ≈ 0.93/
√

18.50 = 0.216 ≈
0.92/

√
19 = 0.211. Therefore, introducing the parameter κ that ac-

counts for the above experimental results, we have [12]:

M

me
≈ κ

√
B; 0.207 � κ � 0.216, (3)

where B is given in Tesla. Combining now Eqs. (2)–(3) we obtain
the FQHE experimental range of the interaction parameter K :

11.07 � K = 4π3/2Mc2

εΦ
3/2
0

√
B

= κ
4π3/2mec2

εΦ
3/2
0

� 11.56. (4)

Eq. (1) is linear and hence dispersive in its free-particle angular-
momentum eigenspace. Its stationary solutions are expected to
spread out over more and more Slater determinants made up of
single particle solutions when the perturbation defined by K �= 0
grows. Our approach is however different. We interpret the mass
M as being the effective mass of electrons, without using the CF

concept. Our model uses particles of mass M and charge e which
interact. In this sense the mass M incorporates the interaction only
partially.

Our first step is to consider the m = 1, lowest-energy triplet
state, and to rewrite Eq. (1) under the form of the following equiv-
alent differential system:[
∇2

X + C|1〉 − 1

X2
− X2

4

]
u|1〉 = 0, (5)

∇2
X C|1〉 = Kδ(X), (6)

where δ(X) is the Dirac function and the Laplacian ∇2
X is 2D in (5),

but 3D in (6). The solution of Eq. (6) is

C|1〉(X) = μ|1〉 − K G(X), (7)

where the eigenvalue μ|1〉 stands for E |1〉 + 1 corresponding to the
Larmor rotation at m = 1 and G(X) = 1/X is the 3D Green func-
tion.

The second step is to replace the 3D with the 2D Laplacian in
the Poisson equation (6) such that it becomes electrostatically con-
sistent with the Laplacian used in the Schrödinger equation (1).
This means using G(X) = − log(X) in Eqs. (5) and (7). We will
call these equations the linear Schrödinger–Poisson problem (LSP).
The LSP is a differential system of second order whose solution
{u(X), C(X)} is defined by four parameters, conventionally called
“initial conditions”, by analogy with a dynamical system. We seek a
stationary solution defined by u(0), du/dX |0, C(0), and dC/dX |0.
(Here, for simplicity, we dropped the subscripts.) Two of these ini-
tial conditions, namely, u(0) and dC/dX |0 vanish for any value
of K . The first one due to a complete depletion in the vortex
trough, and the second one due to the absence of a cusp of the
interaction potential at the origin [13]. The phase space associ-
ated to the initial conditions is thus reduced to the C(0)–du/dX |0
plane. A numerical solution for the LSP (with the 2D Laplacian)
is constructed with a shooting method. In Fig. 1(a) we illustrate
the “trajectory” in the phase space of the initial conditions for the
lowest-energy and most stable free-electron vortex state |1〉 with
increasing K . In practice, to avoid divergences, we consider the
initial condition of X = 4 × 10−4 and not at X = 0. The discontinu-
ities seen in Fig. 1(a) occur due to the jumps of the ground state
solution to higher values of the orbital momentum. The ground
state corresponds to m = 1 for K = 0, but this may change in
the presence of the perturbation, the solution eventually spread-
ing over more and more m values when the parameter K in-
creases.

Now, in the third step, we are aiming at reformulating the Pois-
son equation (6), with a 2D Laplacian, such that the source term
becomes the quantum-mechanical charge distribution of one elec-
tron as seen by the other electron, represented by the mean-field
source term u2

|1) ,

∇2
X C|1) = u2|1). (8)

We distinguish the new eigenstates, which are solutions of a non-
linear nature imposed by Eq. (8), by using labels with parenthe-
ses instead of kets. We will call Eqs. (5) and (8) the nonlinear
Schrödinger–Poisson problem (NSP). The corresponding trajectory
of the initial conditions is shown in Fig. 1(b). The spectral co-
herence of the new solution – i.e. the invariance of its angular
momentum with respect to the increase of K – is obvious: in-
stead of discontinuously spreading out in the phase space like in
Fig. 1(a) the NSP solution starts spiraling down while keeping its
m = 1 initial value [13]. No phase transition towards higher angu-
lar momenta occurs for 0 � K � 15. E.g. in Fig. 1(b) the trajectory
is continuous at [du|1)/dX]0 ≈ 1.75 and C|1)(0) ≈ 1.3. The exper-
imentally relevant values of K , Eq. (4), are included in the small
circle.
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