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We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has
been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially
large number of optimal portfolios, completely different from each other, and extremely sensitive to
any changes in the input parameters of the problem, making the concept of rational decision making
questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and
we show that from the physics point of view, finding an optimal portfolio amounts to calculating the
mean-field magnetizations of a random Ising model with the constraint of a constant magnetization
norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number
of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical

example of a portfolio of several risky common stocks traded on the Nasdaq Market.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio optimization is an important problem in economic
analysis and risk management [1,2], and under certain nonlinear
constraints maps exactly into the problem of finding the ground
states of a long-range spin glass [3-5]. The main assumption is that
the return of any financial asset is described by a random variable,
whose expected mean and variance are interpreted as the reward,
and respectively the risk of the investment. The problem can be
formulated as follows: given a set of financial assets, character-
ized by their expected mean and their covariances, find the opti-
mal weight of each asset, such that the overall portfolio provides
the smallest risk for a given overall return. The standard mean-
variance optimization problem has a unique solution describing
the so called “efficient frontier” in the (risk, return)-plane [6]. The
expected return is a monotonically increasing function of the stan-
dard deviation (risk), and for accepting a larger risk the investor
is rewarded with a higher expected return. Recently it has been
shown that the portfolio optimization problem containing short
sales with obligatory deposits (margin accounts) is equivalent to
the problem of finding the ground states of a long-range Ising spin
glass, where the coupling constants are related to the covariance
matrix of the assets defining the portfolio [3-5]. As a consequence
of this nonlinear constraint, the solution consists of an exponen-
tially large number of optimal portfolios, completely different from
each other, and extremely sensitive to any changes in the input
parameters of the problem. Therefore, under such constraints, the
concept of rational decision making becomes questionable, since
the investor has an exponential number of “options” to choose
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from. Here, we discuss the portfolio optimization problem using
a quadratic formulation of the nonlinear obligatory deposits con-
straint. From the physics point of view, finding an optimal portfolio
amounts to calculating the mean-field magnetizations of a random
Ising model with the constraint of a constant magnetization norm.
We show that the proposed model reduces to an eigenproblem,
with 2N solutions, where N is the number of assets defining the
portfolio. In support to our results, we also work out a detailed
numerical example of a portfolio of several risky common stocks
traded on the Nasdaq Market.

2. Nonlinear optimization model

A portfolio is an investment made in N assets A, with the ex-
pected returns r,, and covariances Spm = Spn, n,m=1,2,..., N. Let
wy, denote the relative amount invested in the n-th asset. Negative
values of w;, can be interpreted as short selling. The variance of
the portfolio captures the risk of the investment, and it is given

by:

N N
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where w = [wq, wa, ..., wy]T is the vector of weights, and S =
[snm] is the covariance matrix. Also, another characteristic of the
portfolio is the expected return:

N
1Y :anrn :WTI', (2)
n=1


http://dx.doi.org/10.1016/j.physleta.2013.12.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:mircea.andrecut@gmail.com
http://dx.doi.org/10.1016/j.physleta.2013.12.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2013.12.013&domain=pdf

M. Andrecut / Physics Letters A 378 (2014) 334-337 335

where r=[r1,72,...,rn]T is the vector of asset returns. The stan-
dard portfolio selection problem consists in finding the solution of
the following multi-objective optimization problem [1,2,6]:

rr‘lni’n{s2 =w'sw}, (3)
max{p =w'r}, (4)

subject to the invested wealth constraint:

N
> wa=1. (5)
n=1

As mentioned in the introduction, this problem has a unique solu-
tion, which can be obtained using the method of Lagrange multi-
pliers [1,2,6].

Recently it has been shown that by replacing the invested
wealth constraint (5) with an obligatory deposits constraint the
problem cannot be solved analytically anymore [3-5]. The con-
straint consists in imposing the requirement to leave a certain
deposit (margin) proportional to the value of the underlying as-
set, and it has the form:

N
Y lwal=w, (6)
n=1

where y > 0 is the fraction defining the margin requirement, and
W is the total wealth invested. As a direct consequence of the
constraint’s nonlinearity, the problem has an exponentially large
number of solutions:

n(N, p) ~ exp(w(p)N), (7)

where w(p) is a positive number depending on the portfolio re-
turn [3-5]. The solutions are also completely different from each
other, and extremely sensitive to any changes in the input param-
eters of the problem. Thus, finding the global optimum becomes
prohibitive (NP-problem) for a larger N.

Let us now reformulate this constraint using a quadratic func-
tion:

N
yY wai=Ww. (8)
n=1

Thus, we impose the requirement to leave a certain deposit pro-
portional to the quadratic value of the asset. This is equivalent to
a constant norm |w|? =k = W/y. Also, we combine the multi-
objective optimization problem into a single Lagrangian objective
function as follows:

rv{’li}}{F(w, A =2wsw— (1 -vwir—pww-k)}, (9

where X € [0, 1] is the risk aversion parameter, and u is the La-
grange parameter.

If A =0 then the solution corresponds to the portfolio with
maximum return, without considering the risk. In this case the op-
timal solution will be formed only by the asset with the greatest
expected return. The case with A =1 corresponds to the portfolio
with minimum risk, regardless of the value of the expected return.
In this case the problem becomes:

: I P Ty
WI;IL]{F(W’LM)_W Sw— pu(w'w—k)}, (10)
with the solutions given by the equation:

VwF (W, A, 1) = 2SW — 2w = 0. (11)

This is a standard eigenproblem:

SW = uw, (12)

where S is a symmetric matrix with N real eigenvalues, and N real
eigenvectors. The eigenvector corresponding to the largest eigen-
value will provide the global optimum, since it will have the lowest
risk.

Any value A € (0, 1) represents a tradeoff between the risk and
return. In this case the solution corresponds to the critical point of
the Lagrangian, which is also the solution of the following system
of equations:

VwF (W, A, ) =2A8w — (1 — \)r—2uw =0, (13)

aF(w, A

M:wTw—k:O. (14)
o

One can see that the Lagrangian objective function is equiva-
lent to the free energy of an Ising model with random couplings
Jnm = —2Aspym and a random magnetic field h, = (1 — A)ry,. From
the physics point of view, finding an optimal portfolio amounts to
calculating the mean-field magnetizations wy of this random Ising
model with the constraint of a constant magnetization norm. In
the following we show that solving this system of equations re-
duces to an inhomogeneous eigenproblem.
From the first equation we have:

1
w=5(1 —M)(AS—uh 7. (15)
Introducing this result into the second equation we obtain:
1
Z(1 —2rTOS—uh?r—1=0. (16)

The left-hand side of this equation is the Schur complement of the
matrix:

M= [(AS—MI)Z ¢! —A)r].

a0 a7)

Since this matrix must be singular (the Schur complement is zero),
we have:

det[(AS—,ul)z - %(1 —A)erT] =0, (18)
which reduces to:

det[}l(] —2)%rr! — A2s? +2ms-;ﬁl] =0. (19)
Obviously, there is a vector w such that:

[%(1 — 12T —A28% 4208 — le}w:o. (20)

This is an inhomogeneous N x N eigenproblem [7], and it can be
reduced further to a 2N x 2N standard eigenproblem by introduc-
ing the following quantity:

u=[uw, (21)

such that we have:

1
Z(1 — 22! — xzsz]w +2ASu = pu. (22)

By combining the last two equations into a matrix representation
we obtain:

& oaJlu]=eli] &

where
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