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We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence.
We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a
phase damping channel to the coin state, investigating the effect of such a mechanism on the probability
of the walker appearing on the target vertex of the graph. We pay particular attention to any potential
advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees
graph.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the main difficulties for the grounding of a platform for
quantum technologies is the effect of noise or “decoherence” on
quantum states. No physical system is ever truly closed due to in-
teractions with its environment. As a result of such interactions,
the quantum state of the system will approach classicality, thus
ceasing to be of interest for quantum-empowered protocols [2]. Be-
fore being able to create useful quantum technologies, we need to
understand these processes, and eventually control them.

An intriguing aspect of decoherence is that, in specific cases
(such as quantum stochastic resonance [3], to throw an example),
weak decoherence mechanisms give rise to sizeable advantages in,
say, the performance of some quantum protocols or the transport
of excitations across a quantum medium. Such counterintuitive ef-
fects are tightly linked to quantum interference phenomena: de-
coherence changes the way the wave function of a given system
evolves in time, thus affecting the occurrence of constructive and
destructive interference. “Accidental” constructive effects may be
induced, without spoiling the working principle of a given quan-
tum process, for sufficiently weak decoherence mechanisms.

All this is particularly important (and evident) in the quantum
walk framework [4], whose advantage in terms of the spreading
rate of the position of a walker on a given “path” may be mag-
nified by small degrees of phase noise. In this paper, we build on
the already well established body of research into the behaviour
of quantum walks when affected by decoherence, reported for in-
stance in Refs. [5–7] and surveyed in Ref. [8].
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After quickly revisiting the paradigm of quantum walks, we
proceed to discuss the protocol under investigation, introducing
phase noise and addressing the performance of the scheme for var-
ious strengths of such mechanism.

2. Quantum walks

A quantum walk is best described as the quantum analogue of
the classical random walk. However, unlike the classical random
walk, the evolution of a quantum walk is entirely deterministic.
Quantum walks of course allow for superposition states of the
walker, enabling them to exhibit interesting behaviours not shown
by their classical counterparts. A comprehensive survey of quan-
tum walks, covering both continuous and discrete time variants,
and detailing the behaviours of quantum walks on various struc-
tures, can be found in Ref. [4]. In this paper, we focus on discrete
time quantum walks.

A discrete time quantum walk operates within the Hilbert space
H = H p ⊗ Hc , where H p – known as the position space – de-
scribes the position of the walker on a well-defined structure (here
we shall refer to this structure as the walk’s terrain), and Hc –
known as the coin space – describes an additional degree of free-
dom affecting the evolution of the walk: this degree of freedom
determines the walker’s behaviour in the next time step. For the
evolution of the walk, we define two operators: the shift opera-
tor, S , and the coin operator, C . The shift operator will “move” the
walker on to a new part of its terrain, depending on the coin state.
For example, if the terrain of a walk is a graph, and the walker is
on some vertex of the graph, the shift operator will move it along
one of the vertex’s edges to another vertex. The coin operator is
analogous to the flipping of a coin in a classical random walk, it
will act on the coin space which in turn affects how the walk shall
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Fig. 1. (a) A labelled 3-regular graph. (b) A glued trees graph with 4 layers, G ′4.

evolve in its terrain when the shift operator is applied. We move
the walker along by one step by applying the coin operator fol-
lowed by the shift operator; the state of the walker, starting in
some initial state |ψ(0)〉, is thus described after t total steps by∣∣ψ(t)

〉 = [
S(1lp ⊗ C)

]t∣∣ψ(0)
〉
,

where 1lp is the identity operator on the position space. In other
words, we apply the coin operator and the shift operator t times
to the initial walker state.

In order to provide a complete view of the main features of the
walk protocol, we now give some concrete examples of quantum
walks.

2.1. Discrete time quantum walk on a line

To represent the walk terrain, a line, we shall use the set of in-
tegers. The walker can be anywhere on the line, so we give H p the
basis {|i〉: i ∈ Z}. As previously described, each step of the walk in-
volves a coin flip and a shift. In the walk on the line, the walker
has a “choice” of two directions, left and right. In the classical ran-
dom walk, the decision of which direction to walk in at each step
is reached by flipping a fair coin. Likewise, in our quantum walk
we shall use a coin space of degree two, viz. Hc is given the basis
{|0〉, |1〉}.

We decide to use the Hadamard operator for our coin, as in
Ref. [4]. This has the effect of putting our walker into a superposi-
tion of coin states and will allow for interference to occur during
the course of the evolution of the walk. With regards to the walk-
er’s behaviour on the terrain, the classical random walk will move
one step to the left or one step to the right depending on the most
recent coin flip. The same idea applies for the quantum walk. We
define the shift operator as

S|p, c〉 =
{ |p − 1, c〉, if c = 0,

|p + 1, c〉, if c = 1.

Ambainis et al. have shown in Ref. [9] that the quantum walk
on the line spreads out quadratically faster than the classical ran-
dom walk on the line.

2.2. Discrete time quantum walk on a k-regular graph

In general, a graph G = (V , E) is specified by fixing a set of
vertices V along with a set of edges E connecting them. k-regular
graphs are graphs with k edges attached to each vertex. We af-
fix a label 0 � l � k − 1 to each end of each edge, as illustrated
in Fig. 1(a). The walker will traverse the graph’s vertices, moving

along the edges, so we define the position space H p as having the
basis {|p〉: p ∈ V }.

At each time step, the walker has a fan-out of k vertices to
move to and we thus have to use an iso-dimensional coin space.
We now give Hc the basis {|c〉: 0 � c � k − 1}. We then introduce
the Grover coin

C (G)
i, j =

{
a, if δi, j = 1,

b, otherwise,
(1)

which, as described in Ref. [4], generalises the Hadamard coin to
Hilbert spaces of dimension larger than 2. In order for C (G)

i, j to

be unitary, the conditions |a|2 + (k − 1)|b|2 = 1 and ab∗ + a∗b +
(k − 2)|b|2 = 0 have to hold (with a,b ∈ C). The values of a and b
can be changed to vary the behaviour of the walk on the graph.
We shall use a Grover coin later on to perform the simulations at
the core of our work.

As for the shift operator, this must take the walker along the
appropriate edge to a new vertex, depending on the coin state.
Again, we state that this idea is a generalisation of the walk on
the line in which we give the walker a choice of k directions at
each step rather than 2. We define our shift operator as

S|v, c〉 = ∣∣w, c′〉, (2)

where (v, w) ∈ G and is labelled c on v ’s end, and c′ is the label
assigned to the destination node’s end of the edge.

3. Model used

The goal of the glued trees (GT) algorithm for quantum search
is the following: beginning from the left-most vertex of a given GT
graph, traverse the graph and reach the right-most vertex, re-
ferred to as the target vertex. Childs et al. [1] use this algorithm
to show quantum walk search to be fundamentally more effective
than classical random walk search by presenting a class of graphs
(the GT graphs) that force classical random walks to make expo-
nentially many queries to an oracle encoding the structure of the
graph, but that are traversable by quantum walks with a polyno-
mial number of queries to such an oracle. In order to study the
robustness of the algorithm to the detrimental effects of decoher-
ence, we shall determine how effectively it achieves its goal when
subjected to an increasing degree of phase damping noise. For this
reason, we will focus on the probability that the walker is on the
target vertex at the end of the walk. We thus consider GT graphs
such as the one illustrated in Fig. 1(b), i.e. consisting of n layers
before the gluing stage, and thus labelled as G ′n.
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