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For the one-dimensional nonlinear Schrödinger equation with a complex potential, it is shown that if
this potential is not parity-time (PT ) symmetric, then no continuous families of solitons can bifurcate
out from linear guided modes, even if the linear spectrum of this potential is all real. Both localized and
periodic non-PT -symmetric potentials are considered, and the analytical conclusion is corroborated by
explicit examples. Based on this result, it is argued that PT -symmetry of a one-dimensional complex
potential is a necessary condition for the existence of soliton families.
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1. Introduction

Nonlinear wave systems used to be divided into two main cat-
egories: conservative systems and dissipative systems. In the for-
mer category, the system has no energy gain or loss, and solitary
waves (or solitons in short) exist as continuous families, parame-
terized by their propagation constants. A well known example is
the nonlinear Schrödinger equation with or without a real poten-
tial [1,2]. In the latter category, the system has energy gain and
loss, and solitons generally exist as isolated solutions at certain
discrete propagation-constant values, where the energy gain and
loss on the soliton are exactly balanced (such solitons are often
referred to as dissipative solitons in the literature) [3]. A typical
example in this latter category is the Ginzburg–Landau equation
or short-pulse lasers (see also [4,5]).

However, a recent discovery is that, in dissipative but parity-
time (PT ) symmetric systems [6], solitons can still exist as con-
tinuous families, parameterized by their propagation constants
[7–24]. This exact balance of continually deformed wave profiles
in the presence of gain and loss is very remarkable.

The existence of soliton families in conservative and PT -sym-
metric systems can be intuitively understood as follows. In both
cases, the linear spectrum of the system is all-real or partly-real
[6,25]. This means that the system supports linear guided modes.
Then under nonlinearity, these linear guided modes can bifurcate
out, leading to continuous families of solitons. In typical dissipa-
tive systems (such as the Ginzburg–Landau equation), however, the
linear spectrum is all complex. Since there are no linear guided
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modes, soliton-family bifurcation from linear modes then is not
possible. As a result, it is understandable that only isolated soli-
tons can exist in such typical dissipative systems.

It turns out that non-PT -symmetric dissipative systems can
also possess all-real or partly-real linear spectra. Indeed, for
the one-dimensional (1D) linear Schrödinger operator, various
non-PT -symmetric complex potentials with all-real spectra have
been constructed by the supersymmetry method [26–28]. Other
non-PT -symmetric dissipative systems with partly-real spectra
have been reported as well [4,29,30]. In such non-PT -symmetric
dissipative systems, since linear guided modes exist, then an im-
portant question is: can continuous families of solitons bifurcate
out from them? If they do, then the underlying non-PT -sym-
metric dissipative system would allow much more flexibility in
steering nonlinear localized modes (such as optical solitons) with
continuous ranges of intensities, and this flexibility could have po-
tential physical applications.

In this article, we investigate the existence of soliton fam-
ilies in the 1D nonlinear Schrödinger (NLS) equation with a
non-PT -symmetric complex potential. This NLS system gov-
erns paraxial nonlinear light propagation in a medium with
non-PT -symmetric refractive-index and gain-loss landscape [2,7],
as well as Bose–Einstein condensates with a non-PT -symmetric
trap and gain-loss distribution [31]. In this NLS model, we show
that no soliton families can bifurcate out from localized linear
modes of a non-periodic potential or Bloch-band edges of a pe-
riodic potential. This means that no soliton families can bifurcate
out from linear guided modes (if such modes exist). This result
suggests that 1D non-PT -symmetric potentials do not support
continuous families of solitons. In other words, PT -symmetry of
a 1D complex potential is a necessary condition for the existence
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of soliton families (although it is not necessary for all-real linear
spectra).

2. Preliminaries

The model equation we consider is the following 1D NLS equa-
tion with a linear non-PT -symmetric complex potential

iUt + Uxx − V (x)Ψ + σ |Ψ |2Ψ = 0, (2.1)

where V (x) is complex-valued and non-PT -symmetric, i.e.,

V ∗(x) �= V (−x), (2.2)

the asterisk represents complex conjugation, and σ = ±1 is the
sign of nonlinearity. This equation governs paraxial light transmis-
sion as well as Bose–Einstein condensates in non-PT -symmetric
media. In this model, the nonlinearity is cubic. But extension of
our analysis to an arbitrary form of nonlinearity is straightforward
without much more effort [32].

Regarding the non-PT -symmetric potential V (x), a remark
is in order. If this V (x) is non-PT -symmetric, but becomes
PT -symmetric after a certain spatial translation x0, i.e., V (x − x0)

is PT -symmetric, then wave dynamics in this non-PT -symmetric
potential V (x) is equivalent to that in the PT -symmetric poten-
tial V (x − x0) and is thus not the subject of our study. Hence, in
this article we require that the non-PT -symmetric potential V (x)
in Eq. (2.1) remains non-PT -symmetric under any spatial transla-
tion.

For non-PT -symmetric complex potentials, their linear spectra
may or may not contain real eigenvalues. In this article, we will
consider those potentials that admit real eigenvalues in their lin-
ear spectra. Non-PT potentials with all-real spectra are special but
important examples of such potentials.

We seek solitons in Eq. (2.1) of the form

U (x, t) = eiμt u(x), (2.3)

where u(x) is a localized function satisfying the equation

uxx − V (x)u − μu + σ |u|2u = 0, (2.4)

and μ is a real-valued propagation constant. The question we will
investigate is, does this equation admit soliton families for a con-
tinuous range of propagation-constant values when the potential
V (x) is non-PT -symmetric?

It is noted that Eq. (2.4) is phase-invariant. That is, if u(x) is a
solitary wave, then so is u(x)eiα , where α is any real constant. In
this article, solitons that are related by this phase invariance will
be considered as equivalent.

3. Non-existence of soliton families bifurcating from localized
linear modes

In this section, we consider non-PT -symmetric potentials that
are not periodic (for instance, localized potentials). Such potentials
can admit discrete real eigenvalues, i.e., linear guided modes [4,
26–30]. If this potential were real or PT -symmetric, soliton fam-
ilies would always bifurcate out from those linear guided modes
(see the last section of this article). However, when the potential
is non-PT -symmetric, we will show that such soliton-family bi-
furcations are forbidden.

Suppose V (x) is a non-PT -symmetric potential which admits
a simple discrete real eigenvalue μ0, with the corresponding local-
ized eigenfunction ψ(x), i.e.,

Lψ = 0, (3.1)

where

L ≡ d2

dx2
− V (x) − μ0. (3.2)

Since μ0 is a simple eigenvalue, the equation Lψg = ψ for the
generalized eigenfunction ψg should not admit any solution. This
means that the solvability condition of this ψg equation should not
be satisfied, i.e., its inhomogeneous term ψ should not be orthog-
onal to the adjoint homogeneous solution ψ∗ , or〈
ψ∗,ψ

〉 �= 0, (3.3)

where

〈 f , g〉 ≡
∞∫

−∞
f ∗(x)g(x)dx (3.4)

is the standard inner product.
If a soliton family in Eq. (2.4) bifurcates out from this localized

linear eigenmode, then we can expand these solitons into a pertur-
bation series. We will show that this perturbation series requires
an infinite number of nontrivial conditions to be satisfied simul-
taneously, which is impossible in practice due to lack of spatial
symmetries in the 1D potential V (x).

To proceed, let us expand these solitons into a perturbation se-
ries

u(x;μ) = ε1/2[u0(x) + εu1(x) + ε2u2(x) + · · ·], (3.5)

where ε ≡ μ − μ0 is small. Substituting this expansion into
Eq. (2.4), at O (ε1/2) we get

Lu0 = 0, (3.6)

hence

u0 = c0ψ, (3.7)

where c0 is a certain non-zero constant.
At O (ε3/2), we get the equation for u1 as

Lu1 = c0
(
ψ − σ |c0|2|ψ |2ψ)

. (3.8)

Here the u0 solution (3.7) has been utilized. The solvability condi-
tion of this u1 equation is that its right hand side be orthogonal
to the adjoint homogeneous solution ψ∗ . This condition yields an
equation for c0 as

|c0|2 = 〈ψ∗,ψ〉
σ 〈ψ∗, |ψ |2ψ〉 . (3.9)

Here we have assumed that the denominator 〈ψ∗, |ψ |2ψ〉 �= 0. If
it is zero, perturbation expansions different from (3.5) would be
needed, but the qualitative result would remain the same as that
given below.

Since |c0| is real and σ = ±1, Eq. (3.9) then requires that

Q 1 ≡ 〈ψ∗,ψ〉
〈ψ∗, |ψ |2ψ〉 must be real. (3.10)

In a non-PT -symmetric complex potential, Q 1 is generically com-
plex, thus this condition is generically not satisfied.

It turns out that Eq. (3.10) is only the first condition for soliton-
family bifurcations. As we pursue the perturbation expansion (3.5)
to higher orders, infinitely more conditions will also appear. This
will be demonstrated below.

If condition (3.10) is met, then the u1 equation (3.8) is solvable.
Its solution is

u1 = û1 + c1ψ, (3.11)
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