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Bloch et al. mapped the precession of the spin-half in a magnetic field of variable magnitude and
direction to the rotations of a rigid sphere rolling on a curved surface utilizing SU(2)–SO(3) isomorphism.
This formalism is extended to study the behaviour of spin–orbit interactions and the mechanical analogy
for Rashba–Dresselhauss spin–orbit interaction in two dimensions is presented by making its spin states
isomorphic to the rotations of a rigid sphere rolling on a ring. The change in phase of spin is represented
by the angle of rotation of sphere after a complete revolution. In order to develop the mechanical
analogy for the spin filter, we find that perfect spin filtration of down spin makes the sphere to rotate at
some unique angles and the perfect spin filtration of up spin causes the rotations with certain discrete
frequencies.

© 2013 Elsevier B.V. All rights reserved.

Spin is a purely quantum mechanical concept with no analogue
in classical mechanics. Thus, the description of classical aspects
of a quantum mechanical phenomenon like spin–orbit interactions
becomes a complex issue. Spin–orbit interactions play an impor-
tant role in understanding atomic and nuclear structure. Littlejohn
and Flynn employed multicomponent wavefunctions to WKB quan-
tization of integrable spherical spin–orbit coupled systems [1]. The
semiclassical description breaks down at those points (or sub-
spaces) of classical phase space where the spin–orbit interaction
locally becomes zero. However, Frisk and Guhr have investigated
spin–orbit interactions in non-spherical potentials to study the
shell structure in atomic nuclei and resolved the problem of mode
conversion in the case of planar orbits [2]. Bolte and Keppeler
derived the relativistic trace formula for Dirac equation by fol-
lowing the technique developed by Gutzwiller for Schrödinger’s
equation [3]. By a path integral approach, it was Klauder, who gave
the formulation for a system with spin in SU(2) spin coherent state
representation as an integral over the sphere S2 [4]. Subsequently,
Kuratsuji et al. represented the path integral in SU(2) spin coher-
ent state as an integral over the paths in extended complex plane
C̄1 [5,6]. But the exact form of SU(2) coherent state path inte-
gral representation for transition amplitude, involving the bound-
ary term and appropriate boundary conditions, was developed by
Kochetov [7]. Adding to his formalism, Pletyukhov et al. [8] calcu-
lated the ingredients of Gutzwiller’s trace formula for the density
of states and tested it for a two-dimensional quantum dot with
a spin–orbit interaction of Rashba type.
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We connect the quantum-mechanical phenomenon of spin–
orbit interactions to its classical analogue by utilizing SU(2)−SO(3)

isomorphism. Bloch et al. discussed the precession of a spin-half
in an external magnetic field by mapping SU(2) spin to SO(3)

rotations of a rigid sphere rolling on a curved surface [9]. Their
formulation is extended and a spinor undergoing spin–orbit inter-
action is mapped to rigid sphere rolling on a ring. While deriving
the formulations for an analogous picture of the eigenstates of the
spin Hamiltonian, no approximations are made. Hence, the exact
solutions obtained by this formalism provide a classical description
of spin–orbit interactions. The dynamics of this model is also very
interesting. The trajectories painted on the sphere rolling on the
curved surface are actually the instantaneous measure of the mag-
netic moment associated with a spin-half particle. In Section 1, we
present the basic ideas, following [9], and then we allow ourselves
a leap of imagination by exploiting the mathematical similarity
of B and L as axial vectors.

1. Motivation

Consider a rigid sphere rolling along a curve Γ on a plane.
An inertial coordinate system called the spatial coordinate system
with its origin at the center of the sphere is fixed. The position
and the instantaneous velocity with respect to the center of the
sphere of a given particle in the body at time t are denoted by X(t)
and Ẋ(t). At each instant t , there exists a unique angular velocity ω
such that, for every particle in the body,

Ẋ(t) = ω × X(t). (1)

The translational velocity of the rolling sphere is
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Fig. 1. Illustration of directions n (normal vector), t (tangent vector) and u to the
curve Γ .

V = tV (t) = t
ds

dt
,

where s is the arc length of the curve Γ and t is the tangent to
the curve Γ [10]. It is well known that the rolling constraint means
that the instantaneous velocity at the point of contact is zero i.e.

ω × nR = t
ds

dt
(2)

where R is the radius of the sphere, n is the normal to the sur-
face. Now the expression for ω can be obtained by taking the cross
product of expression (2) with n, i.e.

ω = V (t)

R
n × t = 1

R

ds

dt
u (3)

where u = n × t is the tangent normal as described in Fig. 1 and
the rolling without instantaneous rotation about the normal, i.e.
ω.n = 0 is considered. Rewriting Eq. (1) by using the expression (3)
for ω, we obtain

dX

ds
= u × X

R
. (4)

If we compare this equation with Larmor precession of the mag-
netic moment in the external magnetic field as it exerts a torque τ
on the magnetic moment

τ = −B × μ

γ
= −B × J,

where γ = e
2m is the gyromagnetic ratio, then X = (x, y, z) is iden-

tified as magnetic dipole moment and s as time. Eq. (3) describes
precession of the angular momentum vector J with frequency

B = − (ux, u y, uz)

R
= −ωs

of constant magnitude 1
R and direction (−u) varying with s. There

is an isomorphism between the rolling sphere written in this way
with a spin-half precessing in the magnetic field. This can be seen
if (using B = −ωs) (4) is rewritten in the form

d

ds

[ x
y
z

]
=

[ 0 Bz −B y

−Bz 0 Bx

B y −Bx 0

][ x
y
z

]
, (5)

which is same as the following equations of motion for two com-
plex numbers a and b

i
d

ds

[
a
b

]
= −1

2

[
Bz Bx − iB y

Bx + iB y −Bz

][
a
b

]
, (6)

where (x, y, z) and (a,b) are related via

x = (
ab∗ + ba∗),

y = i
(
ab∗ − ba∗),

z = (
aa∗ − bb∗), and

x2 + y2 + z2 = 1. (7)

From Eq. (7), the behaviour of rolling sphere as a function of
arc length, which we are taking as equivalent to time, can be de-
termined. The real numbers (x, y, z) represent the coordinates of
a point within the sphere at a unit distance from the center in
the spatial coordinate system with its origin at the center of the
sphere. Thus, the precession of a spin-half in a magnetic field of
variable magnitude and direction is mapped to the rotations of a
rigid sphere on a curved surface as the (x, y, z) coordinates have
already been identified as component of the magnetic moment.
Eq. (6) – the equations of motion for the rolling sphere on a curved
surface are made equivalent to the Schrödinger’s equation for the
spinor χ T = (a,b) in the presence of a magnetic field B because of
SU(2)–SO(3) isomorphism,

i
d

ds
χ = −B.Sχ (8)

where h̄ = 1, S = 1
2 (σx, σy, σz) is the spin operator and (σx, σy, σz)

are Pauli spin matrices [9]. It is well known that the magnetic field
is associated with the angular momentum of the particle by the
following relation:

B = 1

r′
∂V so

∂r′ L, where L = r′ × p′

is the angular momentum and V so is the potential energy associ-
ated with the spin–orbit interactions in the central field. So, Eq. (8)
is now written as

i
d

ds
χ = − 1

r′
∂V so

∂r′ L.Sχ = −kL.Sχ (9)

where k = 1
r′

∂V so
∂r′ is the strength of spin–orbit interaction and the

Hamiltonian of the system undergoing spin–orbit interaction is
given as H = −kL.S.

Thus, the behaviour of the spin–orbit interactions can be stud-
ied by mapping them to the rotations of the sphere rolling on a
curved surface. In [9], precessing of spin about a magnetic field is
considered whereas we are considering spin interacting with the
orbital angular momentum L. Due to fact that mathematics is sim-
ilar, we succeed, but the thought of extending it thus is non-trivial.

Rashba and Dresselhaus spin–orbit interactions are chosen as
special case since they play significant role in dephasing of the
spin components in spintronic devices. The mechanical analogy of
these interaction Hamiltonian is developed by identifying its iso-
morphism with a rigid sphere rolling on a ring. A device called,
spin filter, allows us to choose only one component of the spin. We
develop the mechanical analogue for this device and study how
the perfect filtration of each component of spin is related to the
rotations of the sphere.

2. Rashba and Dresselhaus spin–orbit interaction Hamiltonian

In two dimensional III–V semiconductor systems, there are two
distinct Hamiltonian terms contributing to spin dephasing – “bulk
inversion asymmetry” term and “structure inversion asymmetry”
term. These appear only in asymmetric systems. The bulk inver-
sion asymmetry term arises from Dresselhaus spin-splitting while
the structure inversion symmetry arises from Rashba spin split-
ting [11]. The coupling constant in the case of Rashba spin–orbit
interaction Hamiltonian is proportional to the external magnetic
field but in case of Dresselhaus interaction Hamiltonian, the cou-
pling constant is proportional to the crystal field.

The Hamiltonian for the spin–orbit interaction of Rashba type
is given as:

H = k[σy px − σx p y] = k
[
σ .(ẑ × p)

] = 2k
[
(ẑ × p).S

]
where k is the spin–orbit coupling strength. Hence, Schrödinger
equation for the spinor ψ T = (a,b), taking s as time, is given as:
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