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The multiple elitist genetic algorithm with the adaptive fuzzy fitness granulation (AFFG) is used to design
the phononic crystals with large relative bandgap width (BGW) for combined out-of-plane and in-plane
wave modes. Without assumption on the symmetry of the unit-cell, we obtain an asymmetrical phononic
crystal with the relative BGW which is quite larger than that of the optimized symmetrical structure.
With the help of AFFG, the number of the fitness function evaluations is reduced by over 50% and the
procedure converges 5 times faster than the conventional evolutionary algorithm to reach the same final
fitness values.
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1. Introduction

Phononic crystals (PnCs) [1,2] are periodic composite materi-
als that may have full bandgaps, i.e. the frequency ranges within
which the propagation of acoustic or elastic waves is totally pro-
hibited. Thus the PnCs can be used to design the structures or
devices for damping [3], rectification [4], frequency sensing [5] and
waveguiding [6] of sound or elastic waves. In practical applications,
it is desirable to design a PnC that has a relative bandgap width
(BGW) as big as possible when designing the PnC-based acoustic
devices. The topology optimization algorithm provides an effective
means for searching the optimal design.

In recent years, the topological approaches including gradient-
based or evolutionary methods have been used for many useful
designs of photonic crystals (PtCs) [7–12] and PnCs [13–15] for
different objective functions and different dimensions. In all these
optimization studies except the work by Preble et al. [10] and
Gazonas et al. [14], the topology optimization is based on the
assumption that the primitive unit-cell has the primary 90° ro-
tational symmetry for cutting down the search space and reducing
the optimizing difficulty. However, the symmetry reduction of the
system is generally an efficient way to open wider bandgaps in
a periodic structure [16–19]. Preble et al. [10] have found a PtC
with a large bandgap for the TE mode when the unit-cell lacks
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high symmetry. Gazonas et al. [14] performed the optimal designs
for the acoustic wave using the genetic algorithm (GA). Unfortu-
nately, the shapes of the optimized inclusions are always symmet-
rical polygons due to the coarse grid of the unit-cell. This limited
the generality of the results. Nevertheless, for the PtCs in the sin-
gle mode [7,10,11] and PnCs in out-of-plane [13,14] or in-plane
wave mode [13], the traditional evolutionary algorithm can find
the near-optimal solution easily. But it is a challenge for us to
perform the topology optimization of the unit-cell for two com-
bined modes without any symmetry. Generally, the following two
problems for this optimization need to be solved. Firstly, compared
with the optimization of symmetrical unit-cell, non-symmetry of
the unit-cell means more possible material distributions within the
design domain. If the unit-cell is discretized into N × N elements,
the numbers of the design variables of a symmetrical and an asym-
metrical unit-cell are 2N×N/8 and 2N×N , respectively. Secondly, for
an asymmetrical unit-cell, the calculation of the band structure is
based on a larger area of the wave vector.

In this paper, without any assumption on the symmetry of the
unit-cell, we use a special optimization algorithm in pursuit of
the near-optimal solid/solid distribution of a two-dimensional (2D)
unit-cell for the combined out-of-plane and in-plane wave modes.

2. Optimization problem and optimization algorithm

The optimization goal here is to maximize the relative BGWs of
a complete bandgap appearing among all bands (generally among
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the first several bands) other than the bandgap between two spec-
ified neighboring bands. Therefore it can be simply written as

Maximize
Σ

:

d(Σ) = max∀n

{
2 · mink: ωn+1(Σ,k) − maxk: ωn(Σ,k)

mink: ωn+1(Σ,k) + maxk: ωn(Σ,k)

}
(1)

where Σ denotes the topological distribution within the unit-cell
of the PnC; d is the relative complete BGW for combined out-of-
plane and in-plane wave modes; and n denotes the serial number
of the energy bands (in this paper, we take n = 1,2, . . . ,9). The
calculation of the band structure is based on the finite difference
time-domain (FDTD) method [20,21]. In the present work, only the
2D bi-component PnCs with a square lattice are considered. We di-
vide the unit-cell into N × N pixels, and therefore an N × N logic
matrix is defined. This means that the number of possible struc-
tures is 2N×N . The value 1 (or 0) of a matrix element means that
the corresponding pixel is filled with one (or the other) of the two
component materials.

Because of the large number of design variables and non-
convexity of the structural optimization problem, the biggest chal-
lenge is that much huge computational cost is needed. Besides,
how to solve the optimization problem with enough accuracy in
the solution space via the evolutionary algorithm becomes pivotal.
In the field of structural optimization, in order to reduce the over-
all computing time, a variety of techniques has been proposed in
the literatures by, for instance, using the parallelization techniques
[22], improving the algorithm to accelerate convergence [23,24],
introducing the fitness approximation techniques [25,26] and us-
ing the fuzzy theory [27,28], etc. Perhaps improving GA through
different ways is the most popular choice, and parallel comput-
ing technique is obviously common in the field of optimization.
With these two techniques, a faster process can be obtained and
the whole time of the optimization procedure will be significantly
reduced. However, another alternative is to estimate some individ-
uals based on the fitness approximation rather than evaluate every
individual with the exact fitness function. According to the survey
work by Jin and Branke [29], the use of the approximation models
in fitness evaluation can reduce the number of fitness calculations
most effectively. However, the efficiency of the design optimization
relies heavily on the model quality. That is, the lack of effective
data and the high dimensionality of the input space will lead to
invalid even false fitness approximation of the original exact fit-
ness function.

In such situation, the adaptive fuzzy fitness granulation (AFFG)
[28] as a realization of the fuzzy theory in the field of structural
optimization is used. It can minimize the number of exact fitness
function evaluations (i.e. the calculation of the bandgap of a PnC)
by creating a pool of solutions (fuzzy granules) by which an ap-
proximate solution may be sufficiently applied to proceed with the
evolution. If a given design is sufficiently similar to an existing one,
its fitness can be determined by the design in the current pool. In
other words, the exact fitness values of many designs in evolution
are not needed if they satisfy the relevant condition. Since this ap-
proach does not need training data, it cannot fall into the false
cases such as false peaks, a large approximation error and large
deviation from the true search direction. With this approach, the
optimization procedure can produce the solutions with high preci-
sion, and the computing time is significantly reduced at the same
time [28].

In this paper, we will utilize GA to maximize d(Σ). GA has al-
ready been used in the topology optimization of PtCs and PnCs.
GA (also known as evolutionary algorithms) is a stochastic global
search method that mimics the metaphor of natural biological evo-
lution. GA operates on a population of potential solutions (i.e., the

unit-cell designs) to produce better and better approximations to
the optimal solution. It starts with an initial population accord-
ing to the objective function and applies the selection, crossover
and mutation to produce a new population with higher fitness val-
ues. This process is repeated until the algorithm terminates, and
then the optimal solution is obtained. In order to preserve more
excellent genes from each generation, the multiple elitist genetic
algorithm (MEGA) is proposed [30].

Our optimization procedure incorporating MEGA in conjunction
with AFFG for the present optimization problem is shown in Fig. 1.
The detailed procedure is as follows:

(i) Initialization. Start with an initial population with Np chro-
mosomes, P0 = {X1

1, X1
2, . . . , X1

j , . . . , X1
N p

}, where Xi
j = {xi

j,1,

xi
j,2, . . . , xi

j,r, . . . , xi
j,m} is the jth individual in the ith gener-

ation, with xi
j,r being the rth design variable of Xi

j , and m the
number of design variables. Define a multi-set G of fuzzy gran-
ules (Ck , σk , Lk) according to G = {(Ck, σk, Lk) | Ck ∈ �m, σk ∈
�, Lk ∈ �,k = 1,2, . . . , l} with G being empty in the initial
evolution (i.e., the number of fuzzy granules l is zero), where
Ck is an m-dimensional vector of centers; σk is the width of
membership functions of the kth fuzzy granule; and Lk is the
life index of the granule. Then, the phenotype of the first chro-
mosome (X1

1 = {x1
1,1, x1

1,2, . . . , x1
1,r, . . . , x1

1,m}) is taken as the
center of the first granule (C1 = {c1,1, c1,2, . . . , c1,r, . . . , c1,m} =
X1

1 ).

Remarks. The distance measurement σk that controls the degree
of similarity between two individuals is defined as follows

σk = γ
1

(eF (Ck))β
(2)

where γ and β are two emphasis parameters which are needed to
be chosen carefully. Based on σk , the membership function μk,r of
xi

j,r to each granule member is defined as

μk,r
(
xi

j,r

) = exp

(−(xi
j,r − ck,r)

(σk)
2

)
, k = 1,2, . . . , l (3)

by a Gaussian similarity neighborhood function for each parame-
ter k. If β increases, the distance measurement σk and the mem-
bership function μk,r will decrease, leading to necessity of more
exact fitness evaluations. The similar problem exists for γ . The
previous study showed that the choice of β and γ dependent on
the particular problem being considered [28]. Generally, the val-
ues of β and γ are selected between 0 and 0.5 and between 1.0
and 5.0, respectively, in topology optimization of structures [28]. In
the present study, the values of these two parameters are selected
by numerical tests based on the balance between the acceleration
of the optimization procedure and the accuracy of the fitness ap-
proximation. Our numerical tests suggest that the choice of β = 0.1
and γ = 1.0 can guarantee the average similarity of every new so-
lution to each granule being larger than 90% in the early evolution
and 97% in the later evolution with at least 50% of the finite el-
ement analysis (FEA) evaluations being reduced. So, in this paper,
we select β = 0.1 and γ = 1.0.

(ii) Similarity calculation. Calculate the average similarity of a
new solution Xi

j = {xi
j,1, xi

j,2, . . . , xi
j,r, . . . , xi

j,m} to each gran-
ule Gk of the present granule pool according to μ̄ j,k =∑m

r=1 μk,r(xi
j,r)/m.
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